13 research outputs found

    Halliday\u27s Functional Grammar: Philosophical Foundation and Epistemology

    Get PDF
    It is difficult to track the philosophy foundation and epistemology of systemic functional grammar (SFG) formulated by Halliday in the 1980s as this kind of grammar views language as a systemic resource for meaning. Besides, it has had global impacts on linguistics and flourished in contemporary linguistic theory. Anyone who is familiar with Halliday\u27s work realizes that his SFG is an approach designed to analyze English texts. Halliday (1994: xv) explicitly states that “to construct a grammar for purposes of text analysis: one that would make it possible to say sensible and useful things about any text, spoken or written, in modern English.” The aim of this study is not about the applicability of SFG to text analysis as many researchers and scholars do. Our efforts are made to clarify the philosophical foundation of Halliday\u27s SFG. The paper presents on triangle: (i) language, mind and world; (ii) and empiricism in Halliday\u27s SFG

    Intersatellite-link demonstration mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO satellite)

    Full text link
    LEO-to-GEO intersatellite links using laser communications bring important benefits to greatly enhance applications such as downloading big amounts of data from LEO satellites by using the GEO satellite as a relay. By using this strategy, the total availability of the LEO satellite increases from less than 1% if the data is downloaded directly to the ground up to about 60% if the data is relayed through GEO. The main drawback of using a GEO relay is that link budget is much more difficult to close due to the much larger distance. However, this can be partially compensated by transmitting at a lower data rate, and still benefiting from the much-higher link availability when compared to LEO-to-ground downlinks, which additionally are more limited by the clouds than the relay option. After carrying out a feasibility study, NICT and the University of Tokyo started preparing a mission to demonstrate the technologies needed to perform these challenging lasercom links. Furthermore, to demonstrate the feasibility of this technique, an extremely-small satellite, i.e. a 6U CubeSat, will be used to achieve data rates as high as 10 Gbit/s between LEO and GEO. Some of the biggest challenges of this mission are the extremely low size, weight and power available in the CubeSat, the accurate pointing precision required for the lasercom link, and the difficulties of closing the link at such a high speed as 10 Gbit/s.Comment: 5 pages, 10 figures, 3 table

    Development and Space-Qualification of a Miniaturized CubeSat’s 2-W EDFA for Space Laser Communications

    No full text
    The Japanese National Institute of Information and Communications Technology (NICT) is currently developing a high-performance laser-communication terminal for CubeSats aimed at providing a high-datarate communication solution for LEO satellites requiring transmission of large volumes of data from orbit. A key aspect of the communication system is a high-power optical amplifier capable of providing enough gain to the transmitted signals to be able to close the link on its counterpart’s receiver with the smallest impact in terms of energy and power on the CubeSat’s platform. This manuscript describes the development of a miniaturized 2-W space-grade 2-stage erbium-doped fiber amplifier (EDFA) compatible with the CubeSat form factor, showing the best power-to-size ratio for a space-qualified EDFA to the best of the authors’ knowledge. Performance results under realistic conditions as well as full space qualification and test are presented, proving that this module can support short-duration LEO-ground downlinks as well as long-duration intersatellite links

    Design and Security Analysis of Quantum Key Distribution Protocol Over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver

    Get PDF
    This paper proposes a novel design and analyzes security performance of quantum key distribution (QKD) protocol over free-space optics (FSO). Unlike conventional QKD protocols based on physical characteristics of quantum mechanics, the proposed QKD protocol can be implemented on standard FSO systems using subcarrier intensity modulation binary phase shift keying and direct detection with a dual-threshold receiver. Under security constraints, the design criteria for FSO transmitter and receiver, in particular, the modulation depth and the selection of dual-threshold detection, respectively, is analytically investigated. For the security analysis, quantum bit error rate, ergodic secret-key rate, and final key-creation rate are concisely derived in novel closed-form expressions in terms of finite power series, taking into account the channel loss, atmospheric turbulence-induced fading, and receiver noises. Furthermore, Monte-Carlo simulations are performed to verify analytical results and the feasibility of the proposed QKD protocol

    Design and security analysis of quantum key distribution protocol over free-space optics using dual-threshold direct-detection receiver

    No full text
    This paper proposes a novel design and analyzes security performance of quantum key distribution (QKD) protocol over free-space optics (FSO). Unlike conventional QKD protocols based on physical characteristics of quantum mechanics, the proposed QKD protocol can be implemented on standard FSO systems using subcarrier intensity modulation (SIM) binary phase shift keying (BPSK) and direct detection with a dual-threshold receiver. Under security constraints, the design criteria for FSO transmitter and receiver, in particular, the modulation depth and the selection of dual-threshold detection, respectively, is analytically investigated. For the security analysis, quantum bit error rate (QBER), ergodic secret-key rate, and final key-creation rate are concisely derived in novel closed-form expressions in terms of finite power series, taking into account the channel loss, atmospheric turbulence-induced fading, and receiver noises. Furthermore, Monte-Carlo (M-C) simulations are performed to verify analytical results and the feasibility of the proposed QKD protocol.</p

    Prototype Development and Validation of a Beam-Divergence Control System for Free-Space Laser Communications

    Full text link
    Being able to dynamically control the transmitted-beam divergence can bring important advantages in free-space optical communications. Specifically, this technique can help to optimize the overall communications performance when the optimum laser-beam divergence is not fixed or known. This is the case in most realistic space laser communication systems, since the optimum beam divergence depends on multiple factors that can vary with time, such as the link distance, or cannot be accurately known, such as the actual pointing accuracy. A dynamic beam-divergence control allows to optimize the link performance for every platform, scenario, and condition. NICT is currently working towards the development of a series of versatile lasercom terminals that can fit a variety of conditions, for which the adaptive element of the transmitted beam divergence is a key element. This manuscript presents a prototype of a beam-divergence control system designed and developed by NICT and Tamron to evaluate this technique and to be later integrated within the lasercom terminals. The basic design of the prototype is introduced as well as the first validation tests that demonstrate its performance.Comment: 8 pages, 4 figures, 1 tabl
    corecore