56 research outputs found

    NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Get PDF
    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta-V. It will generate 15,000-lbf of thrust with a single burn of ~ 80's seconds. The lander stage is a bi-propellant, pressure-regulated, pulsing liquid propulsion system to perform all other functions

    Prediction of engine performance and wall erosion due to film cooling for the 'fast track' ablative thrust chamber

    Get PDF
    Efforts have been made at the Propulsion Laboratory (MSFC) to design and develop new liquid rocket engines for small-class launch vehicles. Emphasis of the efforts is to reduce the engine development time with the use of conventional designs while meeting engine reliability criteria. Consequently, the engine cost should be reduced. A demonstrative ablative thrust chamber, called 'fast-track', has been built. To support the design of the 'fast-track' thrust chamber, predictions of the wall temperature and ablation erosion rate of the 'fast-track' thrust chamber have been performed using the computational fluid dynamics program REFLEQS (Reactive Flow Equation Solver). The analysis is intended to assess the amount of fuel to be used for film cooling so that the erosion rate of the chamber ablation does not exceed its allowable limit. In addition, the thrust chamber performance loss due to an increase of the film cooling is examined

    Method for Determining Optimum Injector Inlet Geometry

    Get PDF
    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector

    Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    Get PDF
    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets

    An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers

    Get PDF
    In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date

    An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Get PDF
    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements

    A new root-knot nematode, Meloidogyne moensi n. sp. (Nematoda : Meloidogynidae), parasitizing Robusta coffee from Western Highlands, Vietnam

    Get PDF
    A new root-knot nematode, parasitizing Robusta coffee in Dak Lak Province, Western Highlands of Vietnam, is described as Meloidogyne moensi n. sp. Morphological and molecular analyses demonstrated that this species differs clearly from other previously described root-knot nematodes. Morphologically, the new species is characterized by a swollen body of females with a small posterior protuberance that elongated from ovoid to saccate; perineal patterns with smooth striae, continuous and low dorsal arch; lateral lines marked as a faint space or linear depression at junction of the dorsal and ventral striate; distinct phasmids; perivulval region free of striae; visible and wide tail terminus surrounding by concentric circles of striae; medial lips of females in dumbbell-shaped and slightly raised above lateral lips; female stylet is normally straight with posteriorly sloping stylet knobs; lip region of second stage juvenile (J2) is not annulated; medial lips and labial disc of J2 formed dumbbell shape; lateral lips are large and triangular; tail of J2 is conoid with rounded unstriated tail tip; distinct phasmids and hyaline; dilated rectum. Meloidogyne moensi n. sp. is most similar to M. africana, M. ottersoni by prominent posterior protuberance. Results of molecular analysis of rDNA sequences including the D2-D3 expansion regions of 28S rDNA, COI, and partial COII/16S rRNA of mitochondrial DNA support for the new species status

    Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System

    Get PDF
    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system

    Multi-drug resistant Vibrio cholerae O1 variant El Tor isolated in northern Vietnam between 2007 and 2010

    Get PDF
    Since 2007, there has been a re-emergence of cholera outbreaks in northern Vietnam. To understand the molecular epidemiological relatedness and determine the antibiotic susceptibility profiles of responsible V. cholerae O1 outbreak strains, a representative collection of 100 V. cholerae O1 strains was characterized. V. cholerae O1 strains isolated from diarrhoeal patients in northern Vietnam between 2007 and 2010 were investigated for antibiotic susceptibility and characterized by using phenotypic and genotypic tests, including PFGE analysis. Ten clinical V. cholerae O1 isolates from Bangladesh and Zimbabwe were included for comparison. The results revealed that all isolates were resistant to co-trimoxazole and nalidixic acid, 29 % were resistant to tetracycline and 1 % were resistant to azithromycin. All strains were susceptible to ampicillin–sulbactam, doxycycline, chloramphenicol and ciprofloxacin and 95 % were susceptible to azithromycin. MIC values did show reduced susceptibility to fluoroquinolones and 63 % of the strains were intermediately resistant to tetracycline. The isolates expressed phenotypic traits of both serogroup O1 Ogawa and El Tor and harboured an rstR El Tor and ctxB classical biotype. Among the outbreak isolates, only a single PFGE pattern was observed throughout the study period. This study shows that multi-drug resistant V. cholerae altered El Tor producing classical CT strains are now predominant in northern Vietnam

    Associations of Underlying Health Conditions With Anxiety and Depression Among Outpatients: Modification Effects of Suspected COVID-19 Symptoms, Health-Related and Preventive Behaviors

    Get PDF
    Objectives: We explored the association of underlying health conditions (UHC) with depression and anxiety, and examined the modification effects of suspected COVID-19 symptoms (S-COVID-19-S), health-related behaviors (HB), and preventive behaviors (PB).Methods: A cross-sectional study was conducted on 8,291 outpatients aged 18–85 years, in 18 hospitals and health centers across Vietnam from 14th February to May 31, 2020. We collected the data regarding participant's characteristics, UHC, HB, PB, depression, and anxiety.Results: People with UHC had higher odds of depression (OR = 2.11; p < 0.001) and anxiety (OR = 2.86; p < 0.001) than those without UHC. The odds of depression and anxiety were significantly higher for those with UHC and S-COVID-19-S (p < 0.001); and were significantly lower for those had UHC and interacted with “unchanged/more” physical activity (p < 0.001), or “unchanged/more” drinking (p < 0.001 for only anxiety), or “unchanged/healthier” eating (p < 0.001), and high PB score (p < 0.001), as compared to those without UHC and without S-COVID-19-S, “never/stopped/less” physical activity, drinking, “less healthy” eating, and low PB score, respectively.Conclusion: S-COVID-19-S worsen psychological health in patients with UHC. Physical activity, drinking, healthier eating, and high PB score were protective factors
    • …
    corecore