31 research outputs found

    Ultra High Resolution Transmission Electron Microscopy of Matrix Mineral Grains in CM Chondrites: Preaccretionary or Parent Body Aqueous Processing?

    Get PDF
    CM chondrites are highly hydrated meteorites associated with a parent asteroid that has experienced significant aqueous processing. The meteoritic evidence indicates that these non-differentiated asteroids are formed by fine-grained minerals embedded in a nanometric matrix that preserves chemical clues of the forming environment. So far there are two hypothesis to explain the presence of hydrated minerals in the content of CM chondrites: one is based on textural features in chondrule-rim boundaries [1-3], and the other ‘preaccretionary’ hypothesis proposes the incorporation of hydrated phases from the protoplanetary disk [4-6]. The highly porous structure of these chondrites is inherited from the diverse materials present in the protoplanetary disk environment. These bodies were presumably formed by low relative velocity encounters that led to the accretion of silicate-rich chondrules, refractory Ca- and Al-rich inclusions (CAIs), metal grains, and the fine-grained materials forming the matrix. Owing to the presence of significant terrestrial water in meteorite finds [7], here we have focused on two CM chondrite falls with minimal terrestrial processing: Murchison and Cold Bokkeveld. Anhydrous carbonaceous chondrite matrices are usually represented by highly chemically unequilibrated samples that contain distinguishable stellar grains. Other chondrites have experienced hydration and chemical homogeneization that reveal parent body processes. We have studied CM chondrites because these meteorites have experienced variable hydration levels [8-10]. It is important to study the textural effects of aqueous alteration in the main minerals to decipher which steps and environments promote bulk chemistry changes, and create the distinctive alteration products. It is thought that aqueous alteration has particularly played a key role in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials [7, 11, 12]. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive [5, 11]

    Ultra High Resolution Transmission Electron Microscopy of Matrix Mineral Grains in CM Chondrites: Preaccretionary or Parent Body Aqueous Processing?

    Get PDF
    CM chondrites are highly hydrated meteorites associated with a parent asteroid that has experienced significant aqueous processing. The meteoritic evidence indicates that these non-differentiated asteroids are formed by fine-grained minerals embedded in a nanometric matrix that preserves chemical clues of the forming environment. So far there are two hypothesis to explain the presence of hydrated minerals in the content of CM chondrites: one is based on textural features in chondrule-rim boundaries [1-3], and the other ‘preaccretionary’ hypothesis proposes the incorporation of hydrated phases from the protoplanetary disk [4-6]. The highly porous structure of these chondrites is inherited from the diverse materials present in the protoplanetary disk environment. These bodies were presumably formed by low relative velocity encounters that led to the accretion of silicate-rich chondrules, refractory Ca- and Al-rich inclusions (CAIs), metal grains, and the fine-grained materials forming the matrix. Owing to the presence of significant terrestrial water in meteorite finds [7], here we have focused on two CM chondrite falls with minimal terrestrial processing: Murchison and Cold Bokkeveld. Anhydrous carbonaceous chondrite matrices are usually represented by highly chemically unequilibrated samples that contain distinguishable stellar grains. Other chondrites have experienced hydration and chemical homogeneization that reveal parent body processes. We have studied CM chondrites because these meteorites have experienced variable hydration levels [8-10]. It is important to study the textural effects of aqueous alteration in the main minerals to decipher which steps and environments promote bulk chemistry changes, and create the distinctive alteration products. It is thought that aqueous alteration has particularly played a key role in modifying primordial bulk chemistry, and homogenizing the isotopic content of fine-grained matrix materials [7, 11, 12]. Fortunately, the mineralogy produced by parent-body and terrestrial aqueous alteration processes is distinctive [5, 11]

    HTLV-1 infection in solid organ transplant donors and recipients in Spain

    Get PDF
    HTLV-1 infection is a neglected disease, despite infecting 10-15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopathy

    Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure

    Get PDF
    A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim of this study was to characterize the resistance profile of a large cohort of patients failing DAA-based treatments, and investigate the relationship between HCV subtype and failure, as an aid to optimizing management of these patients. A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 39 Spanish hospitals. The majority had received DAA-based interferon (IFN) a-free regimens; 79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific primers. Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in RAS selection between treatments with and without ribavirin. Regardless of the treatment received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in proteins that were not targets of the inhibitors they received. HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence underscores the importance of accurate HCV subtyping. The frequency of “extra-target” RAS suggests the need for RAS screening in all three DAA target regions

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    Observen meteors hiperbòlics produïts per la trobada de l'estrella Scholz amb el nostre sistema solar fa 80.000 anys

    No full text
    Investigadors de l'Institut de Ciències de l'Espai (ICE-CSIC) i col·laboradors de la Universitat d'Hèlsinki i l'Institut d'Astrofísica de Canàries, han analitzat la trajectòria del meteor FH1, desviada fa 80,000 anys per l'estrella binària Scholz i concloent el seu viatge en impactar amb la Terra a l'octubre de 2022. Revelen que aquest meteor, observat per Xarxa de Boles de Foc Finlandesa (FFN), era asteroidal i procedia d'una òrbita hiperbòlica.Investigadores del Instituto de Ciencias del Espacio (ICE-CSIC) y colaboradores de la Universidad de Helsinki y el Instituto de Astrofísica de Canarias, han analizado la trayectoria del meteoro FH1, desviada hace 80,000 años por la estrella binaria Scholz y concluyendo su viaje al impactar con la Tierra en 2022. Revelan que este meteoro, observado por la Red de Bolas de Fuego Finlandesa (FFN), era asteroidal y procedía de una órbita hiperbólica

    Mechanical properties of minerals in lunar and HED meteorites from nanoindentation testing : implications for space mining

    Get PDF
    Altres ajuts: acords transformatius de la UABThis study analyzes the mechanical and elemental properties of lunar meteorites DHOFAR 1084, JAH 838, NWA 11444, and HED meteorite NWA 6013. Utilizing microscale rock mechanics experiments, that is, nanoindentation testing, this research reveals significant heterogeneity in both mechanical and elemental attributes across the mineral samples. Olivines, pyroxene, feldspar, and spinel demonstrate similar compositional and mechanical characteristics. Conversely, other silicate and oxide minerals display variations in their mechanical properties. Terrestrial olivines subjected to nanoindentation tests exhibit increased hardness and a higher Young's modulus than their lunar counterparts. A linear correlation is observed between the H/E ratio and both plastic and elastic energies. Additionally, the alignment of mineral phases along a constant H/E ratio suggests variations in local porosity. This study also highlights the need for further research focusing on porosity, phase insertions within the matrix, and structural orientations to refine our understanding of these mechanical characteristics. The findings have direct implications for in situ resource utilization strategies and future state-of-the-art impact models. This comprehensive characterization serves as a foundational resource for future research efforts in space science and mining
    corecore