12 research outputs found

    Comparison of systolic blood pressure measurements by auscultation and visual manometer needle jump

    Get PDF
    International Journal of Exercise Science 12(2): 214-220, 2019. Purpose: This study was designed to investigate differences in systolic blood pressure measurements as obtained through auscultation and observation of the visual jump on the manometer. Methods: Men (n = 21; 26.9 ± 7.4 yrs) and women (n = 22; 29.3 ± 13.9 yrs) volunteered to have resting systolic blood pressure (SBP) assessments. During the same cardiac inflation-deflation cycle of traditional sphygmomanometry, the initial visual jump of the manometer needle and first Korotkoff sound heard were recorded. Duplicate assessments were made in each arm with 30 sec between intra-arm trials. Results: Paired t-test results indicated there were no within-method differences between arms for visual jump (R: 132.1 ± 11.3; L: 131.8 ± 10.5 mmHg) or auscultation (R: 116.8 ± 9.0; L: 113.5 ± 8.8 mmHg). There were methodological differences within arm with visual jump being the higher of the two (right: t(42) = -12.69; left: t(42) = -11.37; p \u3c .001). Conclusion: If visual jump determination of SBP cannot be avoided, re-assessment using a more traditional method (i.e. auscultation) is recommended

    Seawater carbonate chemistry and performance and oxidative status in a tolerant burrowing clam

    No full text
    Whereas low levels of thermal stress, irradiance, and dietary restriction can have beneficial effects for many taxa, stress acclimation remains understudied in marine invertebrates, despite being threatened by climate change stressors such as ocean acidification. To test for life-stage and stress-intensity dependence in eliciting enhanced tolerance under subsequent stress encounters, we initially conditioned pediveliger Pacific geoduck (Panopea generosa) larvae to (i) ambient and moderately elevated pCO2 (920 µatm and 2800 µatm, respectively) for 110 days, (ii) secondarily applied a 7-day exposure to ambient, moderate, and severely elevated pCO2 (750 µatm, 2800 µatm, and 4900 µatm, respectively), followed by 7 days in ambient conditions, and (iii) implemented a 7-day third exposure to ambient (970 µatm) and moderate pCO2 (3000 µatm). Initial conditioning to moderate pCO2 stress followed by second and third exposure to severe and moderate pCO2 stress increased respiration rate, organic biomass, and shell size suggesting a stress-intensity-dependent effect on energetics. Additionally, stress-acclimated clams had lower antioxidant capacity compared to clams under ambient conditions, supporting the hypothesis that stress over postlarval-to-juvenile development affects oxidative status later in life. Time series and stress intensity-specific approaches can reveal life-stages and magnitudes of exposure, respectively, that may elicit beneficial phenotypic variation

    Repeat exposure to hypercapnic seawater modifies growth and oxidative status in a tolerant burrowing clam

    No full text
    Although low levels of thermal stress, irradiance and dietary restriction can have beneficial effects for many taxa, stress acclimation remains little studied in marine invertebrates, even though they are threatened by climate change stressors such as ocean acidification. To test the role of life-stage and stress-intensity dependence in eliciting enhanced tolerance under subsequent stress encounters, we initially conditioned pediveliger Pacific geoduck (Panopea generosa) larvae to ambient and moderately elevated PCO2 (920 μatm and 2800 μatm, respectively) for 110 days. Then, clams were exposed to ambient, moderate or severely elevated PCO2 (750, 2800 or 4900 μatm, respectively) for 7 days and, following 7 days in ambient conditions, a 7-day third exposure to ambient (970 μatm) or moderate PCO2 (3000 μatm). Initial conditioning to moderate PCO2 stress followed by second and third exposure to severe and moderate PCO2 stress increased respiration rate, organic biomass and shell size, suggesting a stress-intensity-dependent effect on energetics. Additionally, stressacclimated clams had lower antioxidant capacity compared with clams under ambient conditions, supporting the hypothesis that stress over postlarval-to-juvenile development affects oxidative status later in life. Time series and stress intensity-specific approaches can reveal life-stages and magnitudes of exposure, respectively, that may elicit beneficial phenotypic variation

    Seawater carbonate chemistry of experiment on acclimatory gene expression of primed clams enhances robustness to elevated pCO2

    No full text
    Sublethal exposure to environmental challenges may enhance ability to cope with chronic or repeated change, a process known as priming. In a previous study, pre-exposure to seawater enriched with pCO2 improved growth and reduced antioxidant capacity of juvenile Pacific geoduck Panopea generosa clams, suggesting that transcriptional shifts may drive phenotypic modifications post-priming. To this end, juvenile clams were sampled and TagSeq gene expression data were analysed after (i) a 110-day acclimation under ambient (921 μatm, naïve) and moderately elevated pCO2 (2870 μatm, pre-exposed); then following (ii) a second 7-day exposure to three pCO2 treatments (ambient: 754 μatm; moderately elevated: 2750 μatm; severely elevated: 4940 μatm), a 7-day return to ambient pCO2 and a third 7-day exposure to two pCO2 treatments (ambient: 967 μatm; moderately elevated: 3030 μatm). Pre-exposed geoducks frontloaded genes for stress and apoptosis/innate immune response, homeostatic processes, protein degradation and transcriptional modifiers. Pre-exposed geoducks were also responsive to subsequent encounters, with gene sets enriched for mitochondrial recycling and immune defence under elevated pCO2 and energy metabolism and biosynthesis under ambient recovery. In contrast, gene sets with higher expression in naïve clams were enriched for fatty-acid degradation and glutathione components, suggesting naïve clams could be depleting endogenous fuels, with unsustainable energetic requirements if changes in carbonate chemistry persist. Collectively, our transcriptomic data indicate that pCO2 priming during post-larval periods could, via gene expression regulation, enhance robustness in bivalves to environmental change. Such priming approaches may be beneficial for aquaculture, as seafood demand intensifies concurrent with increasing climate change in marine systems

    Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    Full text link
    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms")

    A proteome-scale map of the human interactome network

    No full text
    Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand geno-type- phenotype relationships. Here, we describe a systematic map of similar to 14,000 high-quality human binary protein-protein interactions. At equal quality, this map is similar to 30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a "broader'' human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high-quality interactome models will help "connect the dots'' of the genomic revolution
    corecore