12 research outputs found

    The singular approach for processing polarization-inhomogeneous laser images of blood plasma layers

    Get PDF
    We present in this work the results of an investigation to analyse the coordinate distributions of azimuths and ellipticity of polarization (polarization maps) in laser images of blood plasma layers for three groups of patients: healthy (group 1), mastopathy (group 2) and breast cancer (group 3). To characterize polarization maps for all groups of samples we use three groups of parameters: statistical moments of the first to fourth orders, autocorrelation functions and logarithmic dependences for power spectra related to distributions of azimuths and ellipticity of polarization inherent to laser images of blood plasma. We ascertain the criteria for diagnosis and differentiation of pathological changes of the breast

    Two-point Stokes vector parameters of object field for diagnosis and differentiation of optically anisotropic biological tissues

    Get PDF
    A new method of Stokes correlometry of polarization-inhomogeneous images of biological layers is presented. Analytic relations are determined for the modulus of complex parameters of the Stokes vector. A technique for measuring the coordinate distributions of the magnitude of the two-point modulus of the Stokes vector is proposed. Objective criteria for differentiating the optical anisotropy of polycrystalline urine films of healthy donors and patients with albuminuria have been found. An excellent level of balanced accuracy of differential diagnostics has been achieved

    New opportunities of differential diagnosis of biological tissues polycrystalline structure using methods of Stokes correlometry

    Get PDF
    A new method of Stokes correlometry of polarization-inhomogeneous images of biological layers is presented. Analytic relations are determined for the phase of complex parameters of the Stokes vector. A method for measuring the coordinate distributions of the magnitude of the phase of two-point parameters of the Stokes vector is proposed. Objective criteria for differentiating the optical anisotropy of the histological sections of tissue biopsy of the female reproductive tissue (FRT) of different pathologies have been found. An excellent level of balanced accuracy of differential diagnostics has been achieved

    Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues

    Get PDF
    Since recently, a number of innovative polarization-based optical imaging modalities have been introduced and extensively used in various biomedical applications, with an ultimate aim to attain the practical tool for the optical biopsy and functional characterization of biological tissues. The techniques utilize polarization properties of light and Mueller matrix mapping of microscopic images of histological sections of biological tissues or polycrystalline films of biological fluids. The main drawback of currently developed laser polarimetry approaches and Mueller matrix mapping techniques is poor reproducibility of experimental data. This is due to azimuthal dependence of polarization and ellipticity values of most matrix elements to sample orientation in respect to incidence light polarization. Current study aims to generalize the methods of laser polarimetry for diagnosis of partially depolarizing optically anisotropic biological tissues. A method of differential Mueller matrix mapping for reconstruction of linear and circular birefringence and dichroism parameter distributions of partially depolarizing layers of biological tissues of different morphological structure is introduced and practically implemented. The coordinate distributions of the value of the first-order differential matrix elements of histological sections of brain tissue with spatially structured, optically anisotropic fibrillar network, as well as of parenchymatous tissue of the rectum wall with an β€œislet” polycrystalline structure are determined. Within the statistical analysis of polarization reproduced distributions of the averaged parameters of phase and amplitude anisotropy, the significant sensitivity of the statistical moments of the third and fourth orders to changes in the polycrystalline structure of partially depolarizing layers of biological tissue is observed. The differentiation of female reproductive sphere connective tissue is realized with excellent accuracy. The differential Mueller matrix mapping method for reconstruction of distributions of linear and circular birefringence and dichroism parameters of partially depolarizing layers of biological tissues of different morphological structures is proposed and substantiated. Differential diagnostics of changes in the phase (good balanced accuracy) and amplitude (excellent balanced accuracy) of the anisotropy of the partially depolarizing layers of the vagina wall tissue with prolapse of the genitals is realized. The maximum diagnostic efficiency of the first-order differential matrix method was demonstrated in comparison with the traditional methods of polarization and Mueller matrix mapping of histological sections of light-scattering biological tissues

    Jones-matrix tomography of biological tissues phase anisotropy in the diagnosis of uterus wall prolapse

    Get PDF
    The work consists of two parts. In the first part - we mapped a distribution of optical activity and birefringence in polycrystalline networks of biological tissues. The Jones-matrix formalism is used for accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline networks of biological tissues can be performed based on the statistical analysis of distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. In the second part we defined - practical operational characteristics, such as sensitivity, specificity and accuracy of Jones-matrix reconstruction of optical anisotropy were identified with the special emphasis on biomedical application, specifically for differentiation of two types of pathology: prolapse and albuminuria

    Jones-matrix tomography of biological tissues phase anisotropy in the diagnosis of uterus wall prolapse

    Get PDF
    In the ground of this work it has been chosen the matrix approach for investigation of the structure of biological objects. Theoretical backgrounds of the method of mapping of anisotropy parameters of polycrystalline component of biological layers are in details provided in the set of work

    Differential Mueller matrix imaging of partially depolarizing optically anisotropic biological tissues

    Get PDF
    Since recently, a number of innovative polarization-based optical imaging modalities have been introduced and extensively used in various biomedical applications, with an ultimate aim to attain the practical tool for the optical biopsy and functional characterization of biological tissues. The techniques utilize polarization properties of light and Mueller matrix mapping of microscopic imagesof histological sectionsof biological tissues or polycrystalline films ofbiologicalfluids. The main drawback of currently developed laser polarimetry approaches and Mueller matrix mapping techniques is poor reproducibility of experi-mental data. This is due to azimuthal dependence of polarization and ellipticity values of most matrix elements to sample orientation in respect to incidence light polarization. Current study aims to generalize the methods of laser polarimetry for diagnosis of partially depolarizing optically anisotropic biological tissues. A method of differential Mueller matrix mapping for reconstruction of linear and circular birefringence and dichroism parameter distributions of partially depolarizing layers of biological tissues of different morphological structure is introduced and practically implemented. The coordinate distributions of the value of the first-order differential matrix elements of histological sections of brain tissue with spatially structured, optically anisotropic fibrillar network, as well as of parenchymatous tissue of the rectum wall with an β€œislet” polycrystalline structure are determined. Within the statistical analysis of polarization reproduced distributions of the averaged parameters of phase and amplitude anisotropy, the significant sensitivity of the statistical moments of the third and fourth orders to changes in the polycrystalline structure of partially depolarizing layers of biological tissue is observed. The differentiation of female reproductive sphere connective tissue is realized with excellent accuracy. The differential Mueller matrix mapping method for reconstruction of distributions of linear and circular birefringence and dichroism parameters of partially depolarizing layers of biological tissues of different morphological structures is proposed and substantiated. Differential diagnostics of changes in the phase (good balanced accuracy) and amplitude (excellent balanced accuracy) of the anisotropy of the partially depolarizing layers of the vagina wall tissue with prolapse of the genital sisrealized. The maximum diagnostic efficiency of the first-order differential matrix method was demonstrated in comparison with the traditional methods of polarization and Mueller matrix mapping of histological sections of light-scattering biological tissues

    Spatial-Frequency Azimuthally Stable Cartography of Biological Polycrystalline Networks

    Get PDF
    A new azimuthally stable polarimetric technique processing microscopic images of optically anisotropic structures of biological tissues histological sections is proposed. It has been used as a generalized model of phase anisotropy definition of biological tissues by using superposition of Mueller matrices of linear birefringence and optical activity. The matrix element M44 has been chosen as the main information parameter, whose value is independent of the rotation angle of both sample and probing beam polarization plane. For the first time, the technique of concerted spatial-frequency filtration has been used in order to separate the manifestation of linear birefringence and optical activity. Thereupon, the method of azimuthally stable spatial-frequency cartography of biological tissues histological sections has been elaborated. As the analyzing tool, complex statistic, correlation, and fractal analysis of coordinate distributions of M44 element has been performed. The possibility of using the biopsy of the uterine wall tissue in order to differentiate benign (fibromyoma) and malignant (adenocarcinoma) conditions has been estimated

    2D-Mueller-matrix tomography of optically anisotropic polycrystalline networks of biological tissues histological sections

    No full text
    tA new technique of Mueller-matrix mapping of the birefringent structure of biological preparations ofhuman organs tissues is suggested. The algorithms of reconstruction of average values and magnitudeof fluctuations of the phase (birefringence) and amplitude (dichroism) of optically anisotropic structureof myocardium and connective tissue component of the vaginal wall histological section are proposed.The magnitudes and ranges of changes in the statistical moments of the 1st-4th order that characterizethe distribution of average values and magnitude of fluctuations of birefringence and dichroism of themyocardium and connective tissue of the vaginal tissues histological sections were determined. Jointstudies of distributions of the characteristics of phase and amplitude of the anisotropy of myocardiumand connective tissue component of the vaginal wall tissues of different states were performed. The casesof various necrotic changes in the myocardium and pathological conditions of the vagina wall (prolapse ofthe genitals) are examined. Balanced accuracy of the method of Mueller-matrix polarization-phase anddiffuse tomography of optically anisotropic polycrystalline networks in the differentiation of necroticand pathological changes in human organs is determined

    Shedding the Polarized Light on Biological Tissues

    No full text
    International audienc
    corecore