566 research outputs found
Energy Consumption and Thermal Comfort Assessment in Retail Stores: Monitoring and Dynamic Simulation Applied to a Case Study in Turin
Maintaining suitable microclimate internal conditions in retails store is of great importance, because thermal comfort needs to be satisfied for both customers and employees.
In the present work, energy consumptions and microclimate quality assessment of a retail store are shown. Buildings dynamic simulation tool, and energy and environmental monitoring were both used for the building climate quality and energy efficiency investigation. The paper shows how monitoring data, combined with dynamic simulation, allow to improve the correct system control increasing energy efficiency, and enhancing moreover the indoor thermal comfort in retails
Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data
The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accurate characterization of non-astrophysical transient noise shortly after it occurs in the detectors. Previously we presented three methods for the classification of transient noise sources. They are Principal Component Analysis for Transients (PCAT), Principal Component LALInference Burst (PC-LIB) and Wavelet Detection Filter with Machine Learning (WDF-ML). In this study we carry out the first performance tests of these algorithms on gravitational-wave data from the Advanced LIGO detectors. We use the data taken between the 3rd of June 2015 and the 14th of June 2015 during the 7th engineering run (ER7), and outline the improvements made to increase the performance and lower the latency of the algorithms on real data. This work provides an important test for understanding the performance of these methods on real, non stationary data in preparation for the second advanced gravitational-wave detector observation run, planned for later this year. We show that all methods can classify transients in non stationary data with a high level of accuracy and show the benefits of using multiple classifiers
Yield, quality, antioxidant, and sensorial properties of diced tomato as affected by genotype and industrial processing in Southern Italy
Research was carried out on processing tomato in Southern Italy in order to compare four round-prismatic type hybrids oriented to diced produce (4420, Miceno, Nemabrix, Impact as a control). The hybrid Nemabrix attained the highest marketable yield (180.9 t ha–1, due to both the highest number of fruit per plant and their mean weight (103.7 and 70 g, respectively), and it was not significantly different from the other genotypes in terms of processing efficiency both as a total and along dicing chain (67.8% and 65.6%, respectively). Lycopene attained the highest concentration in Nemabrix (155 mg kg–1), and β–carotene was most concentrated in 4420 and Miceno (2.8 mg kg–1). Significant differences arose between the genotypes with regard to the sensorial variables aspect, colour, taste, firmness, and fresh taste
Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter
We show new data from the Ni+Sn and Ni+Sn
reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS
and compared with the reverse kinematics reactions at the same incident beam
energy (35 A MeV). Analyzing the data with the method of relative velocity
correlations, fragments coming from statistical decay of an excited
projectile-like (PLF) or target-like (TLF) fragments are discriminated from the
ones coming from dynamical emission in the early stages of the reaction. By
comparing data of the reverse kinematics experiment with a stochastic mean
field (SMF) + GEMINI calculations our results show that observables from neck
fragmentation mechanism add valuable constraints on the density dependence of
symmetry energy. An indication is found for a moderately stiff symmetry energy
potential term of EOS.Comment: Talk given by E. De Filippo at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Kinematical coincidence method in transfer reactions
A new method to extract high resolution angular distributions from
kinematical coincidence measurements in binary reactions is presented.
Kinematic is used to extract the center of mass angular distribution from the
measured energy spectrum of light particles. Results obtained in the case of
10Be+p-->9Be+d reaction measured with the CHIMERA detector are shown. An
angular resolution of few degrees in the center of mass is obtained.Comment: 6 Page 10 Figures submitted to Nuclear Instruments and Methods
Dipolar degrees of freedom and Isospin equilibration processes in Heavy Ion collisions
Background: In heavy ion collision at the Fermi energies Isospin
equilibration processes occur- ring when nuclei with different charge/mass
asymmetries interacts have been investigated to get information on the
nucleon-nucleon Iso-vectorial effective interaction. Purpose: In this paper,
for the system 48Ca +27 Al at 40 MeV/nucleon, we investigate on this process by
means of an observable tightly linked to isospin equilibration processes and
sensitive in exclusive way to the dynamical stage of the collision. From the
comparison with dynamical model calculations we want also to obtain information
on the Iso-vectorial effective microscopic interaction. Method: The average
time derivative of the total dipole associated to the relative motion of all
emitted charged particles and fragments has been determined from the measured
charges and velocities by using the 4? multi-detector CHIMERA. The average has
been determined for semi- peripheral collisions and for different charges Zb of
the biggest produced fragment. Experimental evidences collected for the systems
27Al+48Ca and 27Al+40Ca at 40 MeV/nucleon used to support this novel method of
investigation are also discussed.Comment: Submitted for publication on Phys. Rev. C. 0n 24-oct-201
CaloCube: a novel calorimeter for high-energy cosmic rays in space
In order to extend the direct observation of high-energy cosmic rays up to
the PeV region, highly performing calorimeters with large geometrical
acceptance and high energy resolution are required. Within the constraint of
the total mass of the apparatus, crucial for a space mission, the calorimeters
must be optimized with respect to their geometrical acceptance, granularity and
absorption depth. CaloCube is a homogeneous calorimeter with cubic geometry, to
maximise the acceptance being sensitive to particles from every direction in
space; granularity is obtained by relying on small cubic scintillating crystals
as active elements. Different scintillating materials have been studied. The
crystal sizes and spacing among them have been optimized with respect to the
energy resolution. A prototype, based on CsI(Tl) cubic crystals, has been
constructed and tested with particle beams. Some results of tests with
different beams at CERN are presented.Comment: Seven pages, seven pictures. Proceedings of INSTR17 Novosibirs
- …