185 research outputs found

    Phosphorylation of the VP16 transcriptional activator protein during herpes simplex virus infection and mutational analysis of putative phosphorylation sites

    Get PDF
    AbstractVP16 is a virion phosphoprotein of herpes simplex virus and a transcriptional activator of the viral immediate-early (IE) genes. We identified four novel VP16 phosphorylation sites (Ser18, Ser353, Ser411, and Ser452) at late times in infection but found no evidence of phosphorylation of Ser375, a residue reportedly phosphorylated when VP16 is expressed from a transfected plasmid. A virus carrying a Ser375Ala mutation of VP16 was viable in cell culture but with a slow growth rate. The association of the mutant VP16 protein with IE gene promoters and subsequent IE gene expression was markedly reduced during infection, consistent with prior transfection and in vitro results. Surprisingly, the association of Oct-1 with IE promoters was also diminished during infection by the mutant strain. We propose that Ser375 is important for the interaction of VP16 with Oct-1, and that the interaction is required to enable both proteins to bind to IE promoters

    A retrospective claims analysis of combination therapy in the treatment of adult attention-deficit/hyperactivity disorder (ADHD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination therapy in managing psychiatric disorders is not uncommon. While combination therapy has been documented for depression and schizophrenia, little is known about combination therapy practices in managing attention-deficit/hyperactivity disorder (ADHD). This study seeks to quantify the combination use of ADHD medications and to understand predictors of combination therapy.</p> <p>Methods</p> <p>Prescription dispensing events were drawn from a U.S. national claims database including over 80 managed-care plans. Patients studied were age 18 or over with at least 1 medical claim with a diagnosis of ADHD (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] code 314.0), a pharmacy claim for ADHD medication during the study period July2003 to June2004, and continuous enrollment 6 months prior to and throughout the study period. Dispensing events were grouped into 6 categories: atomoxetine (ATX), long-acting stimulants (LAS), intermediate-acting stimulants (IAS), short-acting stimulants (SAS), bupropion (BUP), and Alpha-2 Adrenergic Agonists (A2A). Events were assigned to calendar months, and months with combined use from multiple categories within patient were identified. Predictors of combination therapy for LAS and for ATX were modeled for patients covered by commercial plans using logistic regression in a generalized estimating equations framework to adjust for within-patient correlation between months of observation. Factors included age, gender, presence of the hyperactive component of ADHD, prior diagnoses for psychiatric disorders, claims history of recent psychiatric visit, insurance plan type, and geographic region.</p> <p>Results</p> <p>There were 18,609 patients identified representing a total of 11,886 months of therapy with ATX; 40,949 months with LAS; 13,622 months with IAS; 38,141 months with SAS; 22,087 months with BUP; and 1,916 months with A2A. Combination therapy was present in 19.7% of continuing months (months after the first month of therapy) for ATX, 21.0% for LAS, 27.4% for IAS, 23.1% for SAS, 36.9% for BUP, and 53.0% for A2A.</p> <p>For patients receiving LAS, being age 25–44 or age 45 and older versus being 18–24 years old, seeing a psychiatrist, having comorbid depression, or having point-of-service coverage versus a Health Maintenance Organization (HMO) resulted in odds ratios significantly greater than 1, representing increased likelihood for combination therapy in managing adult ADHD.</p> <p>For patients receiving ATX, being age 25–44 or age 45 and older versus being 18–24 years old, seeing a psychiatrist, having a hyperactive component to ADHD, or having comorbid depression resulted in odds ratios significantly greater than 1, representing increased likelihood for combination therapy in managing adult ADHD.</p> <p>Conclusion</p> <p>ATX and LAS are the most likely drugs to be used as monotherapy. Factors predicting combination use were similar for months in which ATX was used and for months in which LAS was used except that a hyperactive component to ADHD predicted increased combination use for ATX but not for LAS.</p

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5′ untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    A novel diffuse large B-cell lymphoma-associated cancer testis antigen encoding a PAS domain protein

    Get PDF
    Here we report that the OX-TES-1 SEREX antigen, which showed immunological reactivity with serum from four out of 10 diffuse large B-cell lymphoma (DLBCL) patients, is encoded by a novel gene, PAS domain containing 1 (PASD1). PASD1_v1 cDNA encodes a 639 amino-acid (aa) protein product, while an alternatively spliced variant (PASD1_v2), lacking intron 14, encodes a 773 aa protein, the first 638 aa of which are common to both proteins. The PASD1-predicted protein contains a PAS domain that, together with a putative leucine zipper and nuclear localisation signal, suggests it encodes a transcription factor. The expression of PASD1_v1 mRNA was confirmed by RT-PCR in seven DLBCL-derived cell lines, while PASD1_v2 mRNA appears to be preferentially expressed in cell lines derived from non-germinal centre DLBCL. Immunophenotyping studies of de novo DLBCL patients' tumours with antibodies to CD10, BCL-6 and MUM1 indicated that two patients mounting an immune response to PASD1 were of a poor prognosis non-germinal centre subtype. Expression of PASD1 mRNA was restricted to normal testis, while frequent expression was observed in solid tumours (25 out of 68), thus fulfilling the criteria for a novel cancer testis antigen. PASD1 has potential for lymphoma vaccine development that may also be widely applicable to other tumour types

    cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans

    Get PDF
    The GAL4–UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4–UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 °C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit

    Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    Get PDF
    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential

    Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis

    Get PDF
    [EN] Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.We thank the Nottingham Arabidopsis Stock Centre, Tai-ping Sun, Zhi-Yong Wang, Yanhai Yin, Ana Cano-Delgado, Luis Lopez-Molina, and Francois Parcy for providing seeds or reagents; Laura Garcia-Carcel and Gaston Pizzio for help in the early stages of this work; and Salome Prat for fruitful discussions, sharing unpublished results, and careful reading of the manuscript. J.G.-B. holds a Consejo Superior de Investigaciones Cientificas Fellowship of the Joint Admissions Exercise Predoctoral Program. E. G. M. is recipient of a postdoctoral "Juan de la Cierva" contract from the Spanish Ministry of Science and Innovation. A. L. was supported in part by a fellowship of the Fondo per gli Investimenti della Ricerca di Base Progetto Giovani of the Italian Ministry of Education, University, and Research. Work in the authors' laboratory was funded by Spanish Ministry of Science and Innovation Grants BIO2007-60923, BIO2010-15071, and CSD2007-00057 and by Generalitat Valenciana Grants ACOMP/2010/190 and PROMETEO/2010/020. Rothamsted Research is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom.Gallego Bartolomé, J.; Minguet, EG.; Grau Enguix, F.; Abbas, M.; Locascio, AAM.; Thomas, SG.; Alabadí Diego, D.... (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences. 109(33):13446-13451. https://doi.org/10.1073/pnas.1119992109S134461345110933Depuydt, S., & Hardtke, C. S. (2011). Hormone Signalling Crosstalk in Plant Growth Regulation. Current Biology, 21(9), R365-R373. doi:10.1016/j.cub.2011.03.013Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423daHartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402(S6761), C47-C52. doi:10.1038/35011540Kuppusamy, K. T., Walcher, C. L., & Nemhauser, J. L. (2008). Cross-regulatory mechanisms in hormone signaling. Plant Molecular Biology, 69(4), 375-381. doi:10.1007/s11103-008-9389-2Jaillais, Y., & Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology, 17(6), 642-645. doi:10.1038/nsmb0610-642Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024Fonseca, S., Chico, J. M., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5), 539-547. doi:10.1016/j.pbi.2009.07.013Frigerio, M., Alabadí, D., Pérez-Gómez, J., García-Cárcel, L., Phillips, A. L., Hedden, P., & Blázquez, M. A. (2006). Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiology, 142(2), 553-563. doi:10.1104/pp.106.084871Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences, 105(28), 9829-9834. doi:10.1073/pnas.0803996105Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2(9), e258. doi:10.1371/journal.pbio.0020258Clouse, S. D. (2011). Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. The Plant Cell, 23(4), 1219-1230. doi:10.1105/tpc.111.084475Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3Alabadí, D., Gil, J., Blázquez, M. A., & García-Martínez, J. L. (2004). Gibberellins Repress Photomorphogenesis in Darkness. Plant Physiology, 134(3), 1050-1057. doi:10.1104/pp.103.035451Li, J., Nagpal, P., Vitart, V., McMorris, T. C., & Chory, J. (1996). A Role for Brassinosteroids in Light-Dependent Development of Arabidopsis. Science, 272(5260), 398-401. doi:10.1126/science.272.5260.398Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., … Koncz, C. (1996). Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis. Cell, 85(2), 171-182. doi:10.1016/s0092-8674(00)81094-6Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. The Plant Cell, 445-459. doi:10.1105/tpc.3.5.445Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of Microarray Data Using Z Score Transformation. The Journal of Molecular Diagnostics, 5(2), 73-81. doi:10.1016/s1525-1578(10)60455-2Koornneef, M., & van der Veen, J. H. (1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theoretical and Applied Genetics, 58(6), 257-263. doi:10.1007/bf00265176Davière, J.-M., de Lucas, M., & Prat, S. (2008). Transcriptional factor interaction: a central step in DELLA function. Current Opinion in Genetics & Development, 18(4), 295-303. doi:10.1016/j.gde.2008.05.004Leivar, P., Tepperman, J. M., Monte, E., Calderon, R. H., Liu, T. L., & Quail, P. H. (2009). Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings. The Plant Cell, 21(11), 3535-3553. doi:10.1105/tpc.109.070672Shin, J., Kim, K., Kang, H., Zulfugarov, I. S., Bae, G., Lee, C.-H., … Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proceedings of the National Academy of Sciences, 106(18), 7660-7665. doi:10.1073/pnas.0812219106Silverstone, A. L. (2001). Repressing a Repressor: Gibberellin-Induced Rapid Reduction of the RGA Protein in Arabidopsis. THE PLANT CELL ONLINE, 13(7), 1555-1566. doi:10.1105/tpc.13.7.1555Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098Alabadí, D., Gallego-Bartolomé, J., Orlando, L., García-Cárcel, L., Rubio, V., Martínez, C., … Blázquez, M. A. (2007). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. The Plant Journal, 53(2), 324-335. doi:10.1111/j.1365-313x.2007.03346.xYin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 109(2), 181-191. doi:10.1016/s0092-8674(02)00721-3He, J.-X., Gendron, J. M., Yang, Y., Li, J., & Wang, Z.-Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 99(15), 10185-10190. doi:10.1073/pnas.152342599Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., … Chory, J. (2002). Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2(4), 505-513. doi:10.1016/s1534-5807(02)00153-3Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., & Hwang, I. (2007). Nucleocytoplasmic Shuttling of BZR1 Mediated by Phosphorylation Is Essential in Arabidopsis Brassinosteroid Signaling. The Plant Cell, 19(9), 2749-2762. doi:10.1105/tpc.107.053728Gampala, S. S., Kim, T.-W., He, J.-X., Tang, W., Deng, Z., Bai, M.-Y., … Wang, Z.-Y. (2007). An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis. Developmental Cell, 13(2), 177-189. doi:10.1016/j.devcel.2007.06.009De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Sun, T., & Gubler, F. (2004). MOLECULAR MECHANISM OF GIBBERELLIN SIGNALING IN PLANTS. Annual Review of Plant Biology, 55(1), 197-223. doi:10.1146/annurev.arplant.55.031903.141753He, J.-X. (2005). BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 307(5715), 1634-1638. doi:10.1126/science.1107580Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., … Wang, Z.-Y. (2010). Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 19(5), 765-777. doi:10.1016/j.devcel.2010.10.010Triezenberg, S. J., Kingsbury, R. C., & McKnight, S. L. (1988). Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes &amp; Development, 2(6), 718-729. doi:10.1101/gad.2.6.718Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Gallego-Bartolomé, J., Arana, M. V., Vandenbussche, F., Žádníková, P., Minguet, E. G., Guardiola, V., … Blázquez, M. A. (2011). Hierarchy of hormone action controlling apical hook development in Arabidopsis. The Plant Journal, 67(4), 622-634. doi:10.1111/j.1365-313x.2011.04621.xGallego-Bartolomé, J., Alabadí, D., & Blázquez, M. A. (2011). DELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana. PLoS ONE, 6(8), e23918. doi:10.1371/journal.pone.0023918Steber, C. M., & McCourt, P. (2001). A Role for Brassinosteroids in Germination in Arabidopsis. Plant Physiology, 125(2), 763-769. doi:10.1104/pp.125.2.763Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis. Cell, 120(2), 249-259. doi:10.1016/j.cell.2004.11.044Müller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453(7198), 1094-1097. doi:10.1038/nature0694
    • …
    corecore