57 research outputs found

    Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode

    Get PDF
    Citation: Tian, B., Li, J. R., Oakley, T. R., Todd, T. C., & Trick, H. N. (2016). Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes, 7(12), 13. doi:10.3390/genes7120122Citation: Tian, B., . . . & Trick, H. (2016). Host-Derived Artificial MicroRNA as an Alternative Method to Improve Soybean Resistance to Soybean Cyst Nematode. Genes, 7(12), 13. https://doi.org/10.3390/genes7120122The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pests limiting soybean production worldwide. Novel approaches to managing this pest have focused on gene silencing of target nematode sequences using RNA interference (RNAi). With the discovery of endogenous microRNAs as a mode of gene regulation in plants, artificial microRNA (amiRNA) methods have become an alternative method for gene silencing, with the advantage that they can lead to more specific silencing of target genes than traditional RNAi vectors. To explore the application of amiRNAs for improving soybean resistance to SCN, three nematode genes (designated as J15, J20, and J23) were targeted using amiRNA vectors. The transgenic soybean hairy roots, transformed independently with these three amiRNA vectors, showed significant reductions in SCN population densities in bioassays. Expression of the targeted genes within SCN eggs were downregulated in populations feeding on transgenic hairy roots. Our results provide evidence that host-derived amiRNA methods have great potential to improve soybean resistance to SCN. This approach should also limit undesirable phenotypes associated with off-target effects, which is an important consideration for commercialization of transgenic crops

    Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO\u3csub\u3e2\u3c/sub\u3e fixation in wheat (\u3ci\u3eTriticum aestivum\u3c/i\u3e) following heat stress

    Get PDF
    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO2 fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein

    W3 Is a New Wax Locus That Is Essential for Biosynthesis of beta-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat

    Get PDF
    Citation: Zhang, Z. Z., Wei, W. J., Zhu, H. L., Challa, G. S., Bi, C. L., Trick, H. N., & Li, W. L. (2015). W3 Is a New Wax Locus That Is Essential for Biosynthesis of beta-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. Plos One, 10(10), 21. doi:10.1371/journal.pone.0140524The cuticle plays important roles in plant development, growth and defense against biotic and abiotic attacks. Crystallized epicuticular wax, the outermost layer of cuticle, is visible as white-bluish glaucousness. In crops like barley and wheat, glaucousness is trait of adaption to the dry and hot cultivation conditions, and hentriacontane-14,16-dione (beta-diketone) and its hydroxy derivatives are the major and unique components of cuticular wax in the upper parts of adult plants. But their biosynthetic pathway and physiological role largely remain unknown. In the present research, we identified a novel wax mutant in wheat cultivar Bobwhite. The mutation is not allelic to the known wax production gene loci W1 and W2, and designated as W3 accordingly. Genetic analysis localized W3 on chromosome arm 2BS. The w3 mutation reduced 99% of beta-diketones, which account for 63.3% of the total wax load of the wild-type. W3 is necessary for beta-diketone synthesis, but has a different effect on beta-diketone hydroxylation because the hydroxy-beta-diketones to beta-diketone ratio increased 11-fold in the w3 mutant. Loss of beta-diketones caused failure to form glaucousness and significant increase of cuticle permeability in terms of water loss and chlorophyll efflux in the w3 mutant. Transcription of 23 cuticle genes from five functional groups was altered in the w3 mutant, 19 down-regulated and four up-regulated, suggesting a possibility that W3 encodes a transcription regulator coordinating expression of cuticle genes. Biosynthesis of beta-diketones in wheat and their implications in glaucousness formation and drought and heat tolerance were discussed.Citation: Zhang, Z., . . . & Wanlong, Li. (2015). W3 Is a New Wax Locus That Is Essential for Biosynthesis of β-Diketone, Development of Glaucousness, and Reduction of Cuticle Permeability in Common Wheat. PLoS One, 10(10), 1-21. https://doi.org/10.1371/journal.pone.014052

    The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease

    Get PDF
    Citation: Shi, G. J., Zhang, Z. C., Friesen, T. L., Raats, D., Fahima, T., Brueggeman, R. S., . . . Faris, J. D. (2016). The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Science Advances, 2(10), 9. https://doi.org/10.1126/sciadv.1600822Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat Snn1 gene confers susceptibility to strains of the necrotrophic pathogen Parastagonospora nodorum that produce the SnTox1 protein. We report the positional cloning of Snn1, a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance. Recognition of SnTox1 by Snn1 activates programmed cell death, which allows this necrotroph to gain nutrients and sporulate. These results demonstrate that necrotrophic pathogens such as P. nodorum hijack host molecular pathways that are typically involved in resistance to biotrophic pathogens, revealing the complex nature of susceptibility and resistance in necrotrophic and biotrophic pathogen interactions with plants

    Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat

    Get PDF
    Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan production. Our previous studies demonstrated that the contents of lignans in various wheat cultivars were significantly associated with anti-tumor activities in APC(Min) mice. To enhance lignan biosynthesis, this study was conducted to transform wheat cultivars ('Bobwhite', 'Madison', and 'Fielder', respectively) with the Forsythia intermedia PLR gene under the regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were carried out in their genomes. Furthermore, a real-time PCR indicated -17% increase of PLR gene expression over the control in 2 of the 3 positive transformants at To generation. The levels of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, were found to be 2.2-times higher in one of the three positive transgenic sub-lines at T-2 than that in the wild-type (117.9 +/- 4.5 vs. 52.9 +/- 19.8 mu g/g, p <0.005). To the best of our knowledge, this is the first study that elevated lignan levels in a transgenic wheat line has been successfully achieved through genetic engineering of over-expressed PLR gene. Although future studies are needed for a stably expression and more efficient transformants, the new wheat line with significantly higher SDG contents obtained from this study may have potential application in providing additive health benefits for cancer prevention

    COMPOSITIONS AND METHODS FOR CONTROLLING PLANT PARASITIC NEMATODES

    Get PDF
    The present invention relates to compositions and methods for controlling nematode infestation of plants. In particular, the present invention provides vectors comprising sequences designed to control nematodes by RNA interference (RNAi) and transgenic plants transformed with Such vectors

    Salicylic acid regulates basal resistance to fusarium head blight in wheat

    Get PDF
    Citation: Makandar, R., . . . & Shah, J. (2012). Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 25(3), 431-439. https://doi.org/10.1094/MPMI-09-11-0232Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection
    corecore