
Enhancing Lignan Biosynthesis by Over-expressing Pinoresinol Lariciresinol Reductase in 

Transgenic Wheat 

 

Allan K. Ayella1, Harold N. Trick2 and Weiqun Wang1

 

1 Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA 

2 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA 

 

 

Correspondence: Dr. Weiqun Wang, Department of Human Nutrition, Kansas State University, 

Manhattan, KS 66506, USA 

e-mail: wwang@ksu.edu

Fax: +1-785-532-3132 

 

Abbreviations: HPLC, high performance liquid chromatography; MS, mass spectrum; PCR, 

polymerase chain reaction; PLR, pinoresinol lariciresinol reductase; SDG, secoisolariciresinol 

diglucoside; Ubi, ubiquitin. 

 

 

 

 

 

1 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/5164728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wwang@ksu.edu


2 

Abstract 

Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid 

pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan 

production. Our previous studies demonstrated that the contents of lignans in various wheat 

cultivars were significantly associated with anti-tumor activities in APCP

Min
P mice. To enhance 

lignan biosynthesis, this study was conducted to transform wheat cultivars (‘Bobwhite’, 

‘Madison’, and ‘Fielder’, respectively) with the Forsythia intermedia PLR gene under the 

regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we 

successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. 

Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were 

carried out in their genomes. Furthermore, a real-time PCR indicated ~17% increase of PLR 

gene expression over the control in 2 of the 3 positive transformants at TB0 B generation. The levels 

of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, 

were found to be 2.2-times higher in one of the three positive transgenic sub-lines at TB2 B than that 

in the wild-type (117.9 ± 4.5 vs. 52.9 ± 19.8 µg/g, p < 0.005). To the best of our knowledge, this 

is the first study that elevated lignan levels in a transgenic wheat line has been successfully 

achieved through genetic engineering of over-expressed PLR gene. Although future studies are 

needed for a stably expression and more efficient transformants, the new wheat line with 

significantly higher SDG contents obtained from this study may have potential application in 

providing additive health benefits for cancer prevention. 

 

Keywords: Lignans / Secoisolariciresinol Diglucoside / Pinoresinol Lariciresinol Reductase / 

Transgenic Wheat / Cancer Prevention 
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1 Introduction 

Lignans are phenylpropane dimers linked by β-β bonds with a 1,4-diarylbutane structure [1, 2]. 

They occur naturally in a number of plant families, including the gramineae and oleaceae which 

contain the monocots and eudicots, respectively [3, 4].  In monocots such as wheat, lignans are 

mostly located in the aleurone layer of seeds [5], and in eudicots such as forsthysia, lignans occur 

in the fruits and stems [6].  

The main lignan in wheat bran is secoisolariciresinol diglucoside (SDG). When 

consumed, SDG is oxidized by intestinal microflora to lignan metabolites, e.g., enterodiol and 

enterolactone. The biological importance of lignans and lignan metabolites has been previously 

reviewed [7-9]. Epidemiological studies show an inverse association between dietary intake of 

lignans and the risk of cardiovascular disease [10, 11]. Lignans also have potential protective 

roles against cancer in breast [12], prostate [13], and colon [14, 15]. A study done in rats showed 

that exposure of 10% flaxseed (SDG-rich plant seeds) or the equivalent SDG levels during 

suckling suppressed chemical carcinogen 7, 12-dimethylbenz(α)anthracene (DMBA)-induced 

mammary tumorigenesis [16]. In addition, in vitro cell culture studies demonstrated that 

enterolactone and/or enterodiol reduce growth and metastasis of breast cancer cells [17]. 

Furthermore, lignan metabolites have been shown to reduce cell growth in human colon cancer 

SW480 cells [18]. It is interesting that the contents of lignans in wheat bran from various 

cultivars are correlated with anti-tumorigenesis in spontaneous Min mice with mutant 

adenomatous polyposis coli (APC P

Min
P) [18-19]. Lignans are abundant in flaxseed but not quite in 

wheat grains that usually contain about 4-50 µg/g [19]. Enhancement of the SDG biosynthesis in 

wheat plants, therefore, appears to be significant for cancer prevention. 



Genetic engineering is one of the ways for genetic crop manipulation in order to enhance 

phytochemical synthesis, which has already been shown in many cases to improve agronomic 

and nutritional aspects of crop plants [20, 21]. The biosynthetic pathways to SDG occur via 

coupling of two coniferyl alcohol molecules to afford pinoresinol (Figure 1). Then pinoresinol 

undergoes sequential reduction by pinoresinol-lariciresinol reductase (PLR) to generate 

lariciresinol and secoisolariciresinol [3, 22]. Since PLR catalyzes the last steps of the lignan 

biosynthesis, it is postulated that over-expression of PLR gene by genetic engineering may 

enhance lignan contents. Although PLR gene had already been isolated from various woody 

plants such as Forsthysia intermedia [3, 23-24], the only known isolated PLR enzyme in 

monocots has been found from flaxseeds [25]. In wheat, however, the PLR gene and 

corresponding protein(s) have not been reported yet. 

The purpose of this study is to enhance SDG biosynthesis in transgenic wheat by genetic 

transformation of Forsthysia intermedia PLR gene. To the best of our knowledge, this is the first 

study trying to apply genetic engineering wheat for enhancement of lignan biosynthesis. 

 

2 Materials and Methods 

2.1 DNA constructs 

PLR cDNA (1.2 kb, GenBank accession number U81158) encoding (+)pinoresinol-

(+)lariciresinol reductase in Forthysia intermedia was kindly provided by Dr. Norman Lewis at 

Washington State University (Pullman, WA). Forsthysia PLR cDNA was initially cloned into 

pGEM® T Easy vector (Promega, Madison, WI). During amplification of PLR by PCR, BglI 

sites were appended to the 5’ and 3’ ends, respectively.  The PCR product for PLR gene was then 

obtained following digestion by restricted enzyme BglI. The sequence of the Forsthysia PLR 
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gene was confirmed at the Gene Sequencing Facility, Department of Plant Pathology, Kansas 

State University (Manhattan, KS). The PLR gene was then inserted into BamHI site (compatible 

ends with BglI) in pAHC17 plasmid under the control of the maize ubiquitin (Ubi) promoter (2.1 

kb) as described by Christensen and Quail [26]. Restriction digestion with PstI, EcoRI, and 

BamHI, respectively, were used to confirm the correct directional insertions (data not shown). 

The PCR products by both primer sets (PLR F & R and Ubi-PLR F & R as denoted in Table 1 

and illustrated in Figure 2) were further confirmed by sequencing at the Gene Sequencing 

Facility, Department of Plant Pathology, Kansas State University (Manhattan, KS). The new 

constructed plasmid designated as pAHCUbi-PLR contains the Ubi promoter, opening reading 

frame from the Forsthysia cDNA encoding PLR, and nopaline synthase (nos) terminator region 

(Figure 2). In addition, plasmid pAHC20 contains the bar gene (2.0 kb) under the control of the 

maize ubiquitin promoter-intron [26]. The bar gene confers resistance to the herbicide 

glufosinate (Liberty®, Aventis, Research Triangle Park, NC). Both pAHCUbi-PLR and pAHC20 

plasmids were used for wheat co-transformation. 

2.2 Transformation procedure 

Both pAHCUbi-PLR and pAHC20 plasmids were co-bombarded into embryogenic calli of 

wheat plants (Triticum aestivum L. cv. ‘Bobwhite’, ‘Madison’, and ‘Fielder’, respectively). The 

method of co-transformation and selection of transgenic events have been described by Anand et 

al [27]. Briefly, the premature seeds were surface sterilized with 20% sodium hypochlorite and 

0.02% TWEEN-20. Immature embryos were then aseptically excised on CM4 medium to initiate 

somatic embryo formation. Somatic embryos that were proliferated in CM4+ osmoticum (0.2 M 

mannitol, 0.2 M sorbitol) were co-bombarded with pAHC20 and pAHCUbi-PLR plasmids at 1:1 

ratio by using the particle inflow gun.  

5 
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2.3 Selection and regeneration of transgenic wheat plants  

The methods for selection and recovery of transgenic wheat plants were described by Alpeter et 

al [28] with minor modifications. Briefly, wheat calli were placed on CM4 medium containing 5 

mg/L glufosinate 16 hrs after co-bombardment. Cultures were kept in the medium of 10 mg/L 

glufosinate for 10-15 wks. The growing clumps were transferred to shoot production medium 

(MSP) with 5 mg/L glufosinate selection until green shoots were observed [29]. The cultures 

were then re-transferred to elongation and rooting medium (MSE) containing 5 mg/L glufosinate 

but not 2,4-D for 2-3 wks. Healthy looking plantlets obtained were transferred to soil and grown 

in environmentally controlled green house (16 hrs light at 600 µE/mP

2
P/s). 

2.4 Leaf painting assay 

To examine the expression of the selectable bar resistance gene in the transgenic plants, leaf 

planting was done as previously described [27]. Briefly, freshly prepared solution of herbicide, 

LibertyP

® 
Pat 0.2% (v/v) was applied on the second/third youngest leaf using a cotton plug. The 

painted area was marked using a marker pen and visual observations were recorded 3-5 days 

after painting. Positive lines with resistant green leaves were selected for further PCR screening 

analysis. 

2.5 PCR screening analysis 

As shown in Table, 1, three primer sets were designed to screen bar, PLR, and Ubi-PLR 

combination genes, respectively, in transgenic wheat plants. Genomic DNA was extracted from 

leaves of transgenic wheat plants by using phenol chloroform extraction method [30, 31]. 

Briefly, 100-500 ng of genomic DNA from transgenic plants were screened by each of the three 

primer sets in a PTC-220 thermal Cycler (Hybaid Limited, Hastings, UK). Samples were 

denatured, annealed and extended at 94 P

o
PC, 58-60P

 o
PC, and 72 P

o 
PC for 1 min, 30 s, and 45 s, 



respectively, for 35 cycles. PCR products were visualized through 1.8% agarose gel 

electrophoresis by ethidium bromide staining. Only transformants that tested positive with Ubi-

PLR primer sets were reported as a confirmation of transgenic success. 

2.6 Southern blot analysis of transformed PLR gene 

About 25 µg of extracted genomic DNA as mentioned above were fully digested with BamHI 

and separated by electrophoresis in 0.8% agarose. Forsthysia PLR contains a unique BamHI site 

at 47 bp as indicated in Figure 3. The genomic DNA fragments were then transferred to Hybond-

N+ nylon membrane using standard protocols (Amersham, Piscataway, NJ) and hybridized for 24 

hrs with 32P-dCTP labeled Forsthysia PLR gene. After hybridization, blotted membrane was 

exposed in a phosphor imager cassette and measured using the Storm 840 PhosphorImager 

(Molecular Dynamics Inc., Sunnyvale, CA) 

2.7 PCR amplification and sequence of partial wheat PLR gene 

Wheat genomic DNA was extracted as described above from a wild-type wheat cultivar 

‘Fielder’. A primer set (PLR F & R as denoted in Table 1) was used for PCR amplification of a 

539 bp PLR fragment at the same PCR conditions as mentioned above. The PCR product at 539 

bp was purified using the montage DNA PCR purification kit (Millipore Corporation, Bedford, 

MA) and then inserted into a multiple cloning site of the pGEM® T Easy vector (Promega, 

Madison, WI) for ligation. The inserted wheat PLR gene fragment was isolated from the positive 

clones and sequenced at the Gene Sequencing Facility, Department of Plant Pathology, Kansas 

State University (Manhattan, KS). The sequence of partial wheat PLR gene was then compared 

to Forsthysia PLR sequence in the GenBank at NCBI (National Centre for Biotechnology 

Information) by using NCBI Sequence Comparison Software at http://www.ncbi.nlm.nih.gov/ 

2.8 Real-time PCR quantification of PLR gene expression 
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To quantify the levels of PLR gene expression in the positive transgenic plants at T0, total RNA 

was isolated from the leaf tissues by use of an isolation kit (Promega, Madison WI). The quantity 

of RNA was measured by spectrophotometric analysis at 260 nm. The quality and integrity of the 

extracted RNA was assessed by both spectrophotometric analysis at 230/260 ratio and gel 

electrophoresis in 1.0% agarose gels visualized by ethidium bromide staining under UV light. 

First strand cDNA synthesis was performed using 1 µg of RNA with reverse transcriptase under 

the recommended conditions of the ImProm-IITM Reverse Transcription System (Promega, 

Madison, WI). The primer set (real-time PLR F & R as denoted in Table 1) was applied to 

amplify a 99 bp fragment of the PLR gene by using the Sybr green PCR master-mix® (Bio-rad 

Laboratories, Hercules, CA). Real-time PCR was performed in the iCycler Thermal Cycler (Bio-

Rad Laboratories, Hercules, CA) with a classic amplification profile and the PCR product was 

then quantified by the iCycler Bio-Rad software. The reaction without cDNA product served as a 

negative control and the relative expression of PLR mRNA was normalized to a same amount of 

positive control GAPDH cDNA. The experiment was repeated in triplicate and the results were 

plotted as a relative log CT unit.  

2.9 SDG identification and quantification by HPLC-MS 

Sample extracts from transgenic wheat seeds at T2 were quantified for SDG levels by HPLC and 

confirmed by MS. Briefly, 10-30 transgenic or non-transgenic seeds (~0.2-0.8 g) were grounded 

and defatted by using hexane and then dried in the hood overnight. Defatted whole extracts were 

then homogenized under cold conditions with liquid nitrogen. The mixture was centrifuged and 

the supernatant was extracted for lignans by mixing with diethyl ether for three times. The upper 

organic phase containing the lignans was combined and evaporated to dryness. The residue was 

then re-dissolved in 100% methanol with 5 mM flavone as an internal standard and subjected to 
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HPLC. HPLC procedure was performed according to our previous method [18] with a slight 

modification. Generally, samples were injected into a C18 column (5 µm, 250 X 4.6 mm, 

Alltech, Deerfield, IL) and eluted with a 5% acetonitrile in pH 2.8, 0.01 mM phosphate buffer 

(solvent A) over 100% acetonitrile (solvent B) at a flow rate of 1 ml/min. A gradient run of 0-10 

min in 100% solvent A, 10-30 min in 0-100% solvent B and finally 30-40 min in 100% solvent 

B was determined as optimum. The SDG peak was detected by monitoring absorbance at 283 nm 

and identified by both retention time and mass spectrum comparison with a purified SDG 

(ChromaDex, Irvine, CA). A linear HPLC calibration curve was obtained for the concentrations 

between 0-100 µM. The SDG contents were calculated based upon the standard calibration curve 

following recovery adjustment by internal standard flavone and then expressed as µg/g in fresh 

seed samples. 

HPLC-MS/ESI analysis was performed with Esquire 3000 plus mass spectrometer 

(Bruker Daltomics GmbH, Bremen Germany). Separations were achieved with a synergi RP C18 

column (250 x 2 mm i.d., 5 µm) (Berlin, Germany) using acetonitrile:water (containing 0.1% 

formic acid) for elution in a gradient from 0 min at 70% acetonitrile : 30% water to 3 min at 95% 

acetonitrile : 5% water, followed by isocratic elution with 95% acetonitrile : 5% water between 3 

and 21 min, and finally 100% acetonitrile from 24 to 25 min. The flow rate was 0.4 mL/min 

throughout. The MS/ESI traces recorded was positive ions from m/z 100 to1500. A MS software 

version 3.2 (Bruker Daltomics GmbH, Bremen, Germany) was used to differentiate real peaks 

from background noise peaks. 

3.0 Statistical analysis 

All data were analyzed by the SAS statistical software, version 8.2. The real time PCR 

determination and HPLC quantification were analyzed by one-way ANOVA protocol using the 
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general linear model procedure followed by Fisher’s protected least square difference. A 

probability of ≤ 0.05 is considered significantly. 

 

3 Results 

3.1 Transgenic wheat plants 

Two hundred seventeen putative transgenic lines were generated on selection medium containing 

10 mg/L glufosinate. Out of the 217 putative transformants, 24 lines tested positive for the bar 

gene based on the leaf painting assay (data not shown). Three sets of the gene-specific primers 

(Table 1) were used for PCR screening analyses on these herbicide resistant lines. These primer 

pairs detected the bar (Figure 2A), Forsythia PLR (Figure 2B), and the combination of Ubi-PLR 

construction (Figure 2C), respectively. All 24 herbicide resistant lines tested positive for both 

bar and Forsythia PLR genes and only 3 lines including #4909, #4962, and #4970 from 

transgenic wheat cultivar ‘Fielder’ tested positive for Ubi-PLR transgene (Figure 2C). It should 

be noted that the wild-type ‘Fielder’ also showed a positive band by PCR primers assigned for 

Forsythia PLR, suggesting a cross-reaction occurred from wild-type wheat PLR allele. Most of 

the transgenic lines such as #4858, #4907, and #5010 except for #4995 showed positive bar and 

PLR but negative Ubi-PLR combination, which appeared possibly due to the cross-reaction from 

the wild type wheat PLR allele and thus used as the false positive controls. The line #4995 

seemed to be a negative transgenic control because of its positive bar transgene but negative 

PLR and Ubi-PLR. 

3.2 Detection of transgene by Southern blotting 

To confirm the reliability of the PCR findings, Southern hybridizations were performed using 

Forsythia PLR probe as denoted in Figure 3. All the individual TB0 B lines with both bar and PLR 



transgenes including two false positive controls (#4907 and #5010) and a negative transgenic 

control (#4995) were screened after the digestion of their genomic DNA with restriction enzyme 

BamHI that cut once in the respective PLR transgene cassette at 47. As showed in Figure 3, one 

major Forsythia PLR gene hybridization band was found in both false positive controls and the 

negative transgenic control. Two major bands were observed in the Ubi-PLR positive lines 

#4909 and #4962 and even 5 major bands were noticed in the positive transgenic wheat line 

#4970. The molecular weight of the Ubi-PLR hybridization bands varied at ~1.2, 1.5, 2.2, 4.0, 

and 10.0 kb, respectively. In addition, the wild-type wheat cultivar ‘Fielder’ had shown a weak 

band at ~1.2 kb, suggesting a possible cross-hybridization occurred between Forsythia PLR and 

wheat PLR gene.  

3.3 Sequence of a partial wheat PLR gene and comparison with Forsthysia PLR gene 

Wheat genomic DNA from wild-type wheat cultivar ‘Fielder’ was used as a template for a PCR 

amplification by a pair of primers designed based upon Forsthysia PLR gene. A 539 bp PCR 

product was obtained. After vector clean to remove all the unreadable N’s from the sequence, an 

actual PCR product at 520 bp from the wheat genomic template was successfully sequenced and 

submitted to the GenBank with accession number at EU078326. 

By blast searching in the GenBank database of the NCBI webpage, the sequence of this 

new wheat PLR gene fragment is as much as 98% similarity to Forsthysia PLR (U81158). 

3.4 Real time PCR quantification of transgene expression 

Real-time PCR was used to quantify the expression of PLR gene in the three positive transgenic 

lines in comparison with the negative transgenic control #4995. As shown in Figure 4, the 

relative expression of PLR gene in the transgenic lines #4962 and #4970 but not #4909 was 

significantly higher than that in the negative transgenic control 4995. About 17% increase of 
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PLR gene expression over the negative control was found in the two positive transformants at TB0 B 

generation. The level of PLR gene expression in the wild-type wheat cultivar ‘Fielder’ was also 

measured once, which had a comparable level to the negative transgenic control (data not 

shown). 

3.5 Detection and quantification of SDG by HPLC and HPLC-MS 

The SDG contents in the transgenic wheat seeds at TB2 BgenerationB Bwere further determined by 

HPLC for a final measure of the functional transformation success. As shown in Figure 5, a 

standard SDG peak (Figure 5A) and the SDG peak in the seed extracts (Figure 5B) were 

confirmed by MS with mass to charge ratio at 704.04 [SDG+H B2 BO]P

+
P and 709.12 [SDG+Na]P

 +
P 

(Figure 5D) that was matched with the standard SDG (Figure 5C). Figure 5E showed the SDG 

contents in the transgenic wheat lines #4970 I5, #4970 B1, #4970 A3, and #4909 E5, 

respectively, when compared with the wild-type ‘Fielder’ control and a false positive control 

#5010 A2. The annotation of an alphabetic letter and an Arabic number following each wheat 

line represents various sub-lines in TB1 B and TB2B generations, respectively. A significant increase in 

SDG contents was found in the transgenic sub-line #4970 I5 only, but not in other sub-lines. The 

contents of SDG were about 2.2-times higher in #4970 I5 than that in the wild-type (117.9 ± 4.5 

vs. 52.9 ± 19.8 µg/g, p < 0.005).  

 

4 Discussion 

Of the 217 putative transgenic wheat lines obtained after co-bombardment of pAHCUbi-PLR 

with pAHC20 plasmids, only 3 lines at TB0 B were identified with a positive Ubi-PLR transgene by 

PCR screening. Southern blot further indicated one or multiple copies up to 5 of transferred PLR 

gene in those three transgenic plants. Real time PCR quantification showed a significant increase 



in a relative expression of PLR gene in 2 of the three successful transgenic lines. Quantification 

of the SDG levels finally showed a significant increase in one of the transgenic sub-lines. 

Putative transformants were survived from conditioned-medium selection process and 

bar screening. PCR screening analysis further identified 24 transgenic plants out of 217 putative 

transformants for both bar and PLR positive genes. The wheat line #4995 that had positive bar 

but negative PLR and Ubi-PLR genes might be an escape, since the Southern blotting 

demonstrated the present of an endogenous wheat PLR. The line #4995 thus may not be a perfect 

negative control. Some transgenic plants such as #4858, #4907, and #5010 that carried positive 

bar and PLR genes but not Ubi-PLR could be used as the false positive controls. It should be 

noted that the positive PLR product in the false positive controls appeared to be synthesized from 

indigenous wheat PLR gene, since the wild-type wheat cultivar ‘Fielder’ also showed a positive 

PLR band. It is unexpected that the indigenous wheat PLR gene could be homologous to 

Forthysia PLR. Because wheat is a monocot and Forsythia is a eudicot, it is usually predictable 

to perceive some divergence between their PLR genes. Since the wheat PLR gene was 

recognized by the PCR primers assigned for Forthysia PLR gene in the PCR screening analysis 

and hybridized with Forthysia PLR cDNA in the Southern blotting, and since the sequence of the 

corresponded PCR product from wheat genomic DNA template shared 98% similarity to 

Forthysia PLR gene, this might suggest a homology, at least in part, between wheat and 

Forthysia PLR. Considering a vital role of lignans in plants as the precursors of cell wall lignin 

biosynthesis, it could be possible even for genetically diverse plants such as wheat and Forthysia 

to keep a homologous PLR as a conservative gene. However, the data accumulated in this study 

were suggestive, but not conclusive. A conclusion is not made until a whole wheat PLR 

sequence in both gene and deduced protein is revealed. 
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It is interesting to look at the integration pattern of Forthysia PLR hybridization with 

wheat genomic DNA after BamHI digestion, a single recognition site in Forthysia PLR gene at 

47 bp. The various numbers of hybridization bands appeared to be related to the copy numbers of 

a PLR gene in the wheat. All the wheat lines tested including a negative transgenic control #4995 

and two false positive controls #4907 and #5010 displayed an integrated hybridization band at 

~1.2 kb which seemed compatible with a smear band in the wild-type ‘Fielder’, indicating the 

endogenous copy of the wheat PLR. In comparison with the controls, however, the three positive 

transgenic wheat lines at T0 demonstrated additional hybridization bands: at ~1.5 kb for both 

#4909 and #4962, and at ~1.5, 2.2, 4.0, and 10.0 kb, respectively, for #4970, suggesting the 

insertional copies of PLR gene. Plants #4909 and #4962 showed a similar hybridization pattern 

that might happen from a same transformation event. Plant #4970 had 5 major hybridization 

bands, which might come from different transformation events. Multiple copies from different 

transformation events usually occur due to unpredictable particle inflow gun as suggested by 

others [32-33]. In addition, some weak bands presented in all the samples including the controls 

seemed to be coincided with the predicted weak binding of the partial 5’-side fragment of 47 bp-

PLR. 

Real-time PCR showed a significant expression of PLR gene in both #4962 and #4970, 

but not #4909. The variation of a gene expression might not be merely associated with the copy 

numbers of a PLR gene from different transformation events. An identical expression of PLR 

was found between the transgenic plant #4962 and #4970, although they possessed a diverse 

copy number of PLR gene. That is to say, a copy number alone is probably not sufficient to 

account for the variation in the expression levels. In fact, many other factors such as insertion 

sites, biological variation, and/or gene silencing may affect insertional gene expression, 
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especially in the ubiquitin-promoted gene expression in a transgenic plant as suggested by others 

[34-35]. 

The contents of SDG in the wheat seeds at various TB2 B sub-lines from the two transgenic 

wheat families (#4909 and #4970) that significantly over-expressed PLR gene were further 

examined. A considerable increase in the SDG levels was found in one of the sub-lines (#4970 

I5) in the #4970 family, averaging at 117.9 µg/g vs. 52.9 µg/g in the wild-type wheat cultivar 

‘Fielder’. Such strong enhancement in lignan levels could result in a significant promotion for 

wheat products in cancer prevention. Our previous studies demonstrated that the contents of 

SDG in wheat bran from various wheat cultivars were correlated with anti-tumor activity in a 

spontaneous APCP

Min
P mouse model [18-19]. According to that correlation, the anti-tumor activity 

in the transgenic wheat sub-line #4970 I5, when its SDG contents were averagely raised from 

52.9 to 117.9 µg/g, could be extrapolated to elevate from ~36% up to ~58%. Future studies to 

evaluate the anti-cancer activity of this novel SDG-rich transgenic wheat line are warranted. 

It should be noted that neither #4909 nor other sub-lines in #4970 family showed a 

significant change in the SDG contents when compared with the wild-type or the false positive 

controls. The poor performance in lignan biosynthesis enhancement at TB2 B-seeds from those TB0 B-

over-expressed transgenic plants might have been due to gene silencing, unstably expression, 

and/or inefficient transformation, etc. Indeed, a subsequent analysis of both PLR and bar genes 

by PCR was undetectable in the selected TB2 B seeds including some sub-lines from both #4970 and 

#4909 families, suggesting the transgenic PLR might not be stably established in these sub-lines 

during random transmission. Furthermore, multiple enzymes are involved in the lignan 

biosynthesis and over-expression of a single enzyme may not be efficient if its precursor 

reactants are not just timely abundant. It is likely that a “pathway transformation” by transfer not 



only the last step enzyme PLR but also the early step enzyme(s) such as phenylalanine ammonia 

lyase, a well-known key-enzyme to control the initial step of the secondary metabolism in plants, 

may be much more effective for lignan biosynthesis enhancement.  

Taken together, this is the first study to show a genetically transformed wheat line that 

has over-expressed PLR gene and thus enhanced SDG contents. Of the total 217 putative 

transgenic lines, 3 transformants with the inserted ubiquitin-PLR cassette were successfully 

obtained. Southern blotting further demonstrated insertional copies of PLR gene up to 5 in these 

three wheat genomes and a quantitative real-time PCR indicated over-expression of PLR gene 

significantly in 2 of the 3 transformants. The SDG contents were actually enhanced in one of the 

sub-lines. Although future studies are needed to establish a stably expression and more efficient 

transformants, the new wheat line with significantly higher SDG contents obtained from this 

study may have potential application in providing additive health benefits for cancer prevention. 

 

The authors greatly appreciate the kind help of Dr. Norman Lewis, Washington State University, 
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Table 1. DNA sequences of the primers used in this study 

Primers Sequence Product  
Size (bp) 

PLR F: 
        R: 

TCG TAG ACG TAG TAA TCA GCG CCA 
TCG AGC TCT TTC ACG GAG GCT AAA 

539 

bar F: 
      R: 

CCT GCC TTC ATA CGC TAT TTA TTT 
CTT CAG CAG GTG GGT GTA GAG CGT G 

600 

Ubi-PLR  F: 
                R: 

GAT GCT CAC CCT GTT GTT TGG TGG TGT 
TGC CAA ATT GAC AGA GAC CTC CAA 

583 

Real-time PCR F: 
                         R: 

ATC CAA GAA CCC TCA ACA AGC TGG TGT 
TCC CAT GTC TGA ACA ATT CTC 

99 
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 Figure legends: 

Figure1. Schematic of lignan biosynthetic pathway with emphasis on the last enzymatic 

steps by pinoresinol lariciresinol reductase (PLR) leading to secoisolariciresinol diglucoside 

(SDG), a prominent lignan present in wheat (modified from Fujita et al [3]).  

Figure 2. PCR screening analyses of genomic DNA extracted from various transgenic 

wheat plants. Top panel: schematic of gene construct in transformation pAHC17 plasmid. The 

gene of pinoresinol lariciresinol reductase (PLR) from Forthysia intermedia was constructed in 

pAHC17 under the control of the maize ubiquitin (Ubi) promoter. The gene cassette with the Ubi 

promoter, PLR transgene, and nopaline synthase (Nos) terminator is shown with the amplified 

fragments of PLR and Ubi-PLR for PCR screening analyses. Bottom panel: representative PCR 

screening of seven transgenic clones. The putative (T0) transgenic wheat plants were analyzed by 

PCR-based analyses of genomic DNA using specific primers as denoted in Table 1 for bar (A), 

Forthysia PLR (B), and Ubi-PLR (C), respectively. A PCR profile generated using Forthysia 

PLR primer for genomic DNA extracted from the non-transgenic wild-type ‘Fielder’ control is 

also indicated.  

Figure 3. Southern blot hybridization of wheat genomic DNA resulting various integration 

patterns from different transgenic events. Top panel: Forsthysia PLR inserted in the gene 

cassette with a unique BamHI site at 47 bp. Bottom panel: representative gels of Southern 

hybridization. Wheat genomic DNA obtained from various independent transformants at T0 were 

digested with BamHI followed by hybridization with 32P-labelled Forsythia PLR cDNA. The 

arrows indicate various copies of PLR gene that has different molecular weight at ~1.2, 1.5, 2.2, 

4.0, and 10.0 kb, respectively. The endogenous wheat PLR gene was also detected when probed 

with the genomic DNA from the non-transformed wild-type ‘Fielder’ control.  
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Figure 4. Quantitative real-time PCR for quantifying PLR transcript levels in independent 

transformants at TB0 Bobtained from various transgenic wheat clones. Results are means ± SD, 

n = 3. Means with different alphabetical letters differ significantly, p ≤ 0.05. 

Figure 5. Quantification of SDG contents in transgenic wheat seeds from various sub-lines 

of the transgenic wheat plants at TB2 B. (A) HPLC chromatography of a standard SDG; (B) HPLC 

chromatography of a representative wheat seed extract; (C) MS spectrum of the standard SDG 

peaks, indicating 687.02 [SDG+H]P

+
P, 704.09 [SDG+HB2 BO]P

+
P, and 709.08 [SDG+Na]P

+
P, respectively; 

(D) MS spectrum of the identified SDG peaks obtained from HPLC-separated wheat seed 

extract, indicating 704.04 [SDG+HB2 BO]P

+
P and 709.12 [SDG+Na]P

+
P, respectively; (E) Quantifying 

SDG contents in various wheat seeds at TB2 B from various transgenic wheat clones and non-

transgenic ‘Fielder’ controls. Results are means ± SD, n = 3. Means with different alphabetical 

letters differ significantly, p ≤ 0.005. 
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