17 research outputs found

    Preparation and characterization of stainless steel 316L/HA biocomposite

    Get PDF
    The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (%) HA) were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de Itajubá IEMUniversidade Federal de Itajubá Instituto de Ciências ExatasUniversidade Federal de São Paulo (UNIFESP) Instituto de Ciência e TecnologiaUNIFESP, Instituto de Ciência e TecnologiaSciEL

    Processing and characterization of glass-ceramic foams belonging to the Li2O-ZrO2-Al2O3-SiO2 (LZSA) system produced by gelcasting

    Get PDF
    In this work the viscosimetry technique was used to evaluate the rheological characteristics of ceramic suspensions prepared with a LZSA (Li2O-ZrO2-SiO2-Al2O3) glass. From the rheological characterization it was possible to establish optimized conditions of solid fraction, dispersant, organic monomers and foaming agent for the production of glass-ceramic foams by gelcasting. The resulting foams were subjected to heattreatments at 200-500ºC/60 min, for degradation of organics and at 950ºC/60 min for sintering and crystallization. With the obtained porous ceramic bodies linear thermal shrinkage, apparent density and mechanical strength measurements as well as microstructural analysis were performed. The adaptation of the rheological characteristics of the LZSA parent glass powder with the gelcasting processing technique allowed the production of ceramic foams with high open and interconnected porosity (>90%) with good thermal stability and with mechanical strength suitable for the production of porous ceramics.Neste trabalho, a técnica de viscosimetria foi utilizada para avaliar as características reológicas de suspensões preparadas com precursor vitrocerâmico do sistema LZSA (Li2O-ZrO2-SiO2-Al2O3). A partir da caracterização reológica, foi possível estabelecer condições composicionais adequadas de fração de sólidos, dispersante e monômeros orgânicos. A quantidade de agente espumante para produção de espumas vitrocerâmicas por gelcasting foi determinada pela variação volumétrica após agitação. As espumas resultantes foram submetidas a tratamentos térmicos no intervalo de temperatura compreendido entre 200 e 500ºC/60 min, para degradação da matéria orgânica e a 950ºC/60 min para sinterização e cristalização. Com os corpos cerâmicos porosos foram realizadas medidas de retração térmica, densidade aparente, análise microestrutural e resistência mecânica. A adequação das características reológicas do precursor LZSA por gelcasting permitiu a produção de espumas com elevada porosidade (> 90%) aberta e interconectada com boa estabilidade térmica e com resistência mecânica compatível com cerâmicas [email protected]@[email protected]@emc.ufsc.brUniversidade Federal de Santa Catarina Departamento de Engenharia Mecânica Programa de Pós-Graduação em Ciência e Engenharia de MateriaisCentro Universitário Barriga Verde - UNIBAVEUniversidade Federal de São Paulo (UNIFESP) Departamento de Ciência e TecnologiaUNIFESP, Depto. de Ciência e TecnologiaSciEL

    Influence of PLLA/PCL/HA scaffold fiber orientation on mechanical properties and osteoblast behavior

    Get PDF
    Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young’s Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.info:eu-repo/semantics/publishedVersio

    Morphological, thermal and bioactivity evaluation of electrospun PCL/β-TCP fibers for tissue regeneration

    No full text
    Abstract Electrospinning is a simple and low-cost way to fabricate fibers. Among the various polymers used in electrospinning, polycaprolactone (PCL) stands out due to its excellent biodegradability and biocompatibility. However, PCL has some limitations such as low bioactivity, hydrophobic surface, and long in vivo degradation. Calcium phosphate ceramics have been recognized as an attractive biomaterial. They are bioactive and osteoinductive, and some are even quite biodegradable. Different contents of particles of beta-tricalcium phosphate (β-TCP) were incorporated in polymer matrix to form fibers of PCL/β-TCP composites by electrospinning for possible application in tissue regeneration. The presence of β-TCP particles promoted some changes in the thermal properties of the fibers. The immersion of PCL/β-TCP 8 wt-% fibers in simulated body fluid (SBF) caused the formation of a denser and homogeneous apatite layer on its surface

    Production and Characterization of Porous Polymeric Membranes of PLA/PCL Blends with the Addition of Hydroxyapatite

    No full text
    Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). The literature recognizes that poly (lactic acid) (PLA)/poly (ε-caprolactone) (PCL) blends have better physicochemical properties and that a porous polymer surface facilitates cell adhesion and proliferation. In addition, hydroxyapatite (HAp) incorporated into the polymer matrix promotes osteoinduction properties and osteoconduction to the polymer-ceramic biocomposite. Therefore, polymer membranes of PLA/PCL blend with the addition of HAp could be an alternative to be used in GBR. HAp was obtained by precipitation using the mixture of solutions of tetrahydrate calcium nitrate and monobasic ammonium phosphate salts. The porous membranes of the PLA/PCL (80/20) blend with the addition of HAp were obtained by solvent casting with a controlled humidity method, with the dispersion of HAp in chloroform and subsequent solubilization with the components of the blend. The solution was poured into molds for solvent evaporation under a controlled humidity atmosphere. The membranes showed the formation of pores on their surface, together with dispersed HAp particles. The results showed an increase in the surface porosity and improved bioactivity properties with the addition of HAp. Moreover, in biological studies with cell culture, it was possible to observe that the membranes with HAp have no cytotoxic effect on MC3T3 cells. These results indicate a promising use of the new biomaterial for GBR
    corecore