101 research outputs found
Recommended from our members
A macroscopic device described by a Boltzmann-like distribution
Equilibrium thermodynamic phenomena such as the Maxwell-Boltzmann distribution of molecular velocities are rare in systems of macroscopic particles interacting by mechanical collisions. This paper reports a system composed of millimeter-sized polymer objects that under mechanical agitation exhibits a “discretization” of the configurations of the system, and has a distribution of the probabilities of these configurations that is analogous to a Boltzmann distribution. The system is composed of spheres and a three-link chain on a bounded horizontal surface, shaken with an aperiodic but not completely random horizontal motion. Experiments were performed at different strengths of agitation (quantified by the frequency of agitation, f, at constant amplitude) and densities of spheres (quantified by the filling ratio, FR). The chain was typically found in one of three conformations—extended, single folded, and double folded— because, under collisions with the spheres, adjacent links were stable mechanically only when fully extended or fully folded. The probabilities of the different conformations of the chain could be described by a Boltzmann distribution in which the “temperature” depended on f and the “energies” of conformations on FR. The predictions of the Boltzmann formula using empirically determined “temperatures” and “energies” agreed with measurements within two experimental standard deviations in 47 out of 48 experiments.Chemistry and Chemical Biolog
Statistical Tools for Analyzing Measurements of Charge Transport
This paper applies statistical methods to analyze the large, noisy data sets produced in measurements of tunneling current density (J) through self-assembled monolayers (SAMs) in large-area junctions. It describes and compares the accuracy and precision of procedures for summarizing data for individual SAMs, for comparing two or more SAMs, and for determining the parameters of the Simmons model (β and J0). For data that contain significant numbers of outliers (i.e., most measurements of charge transport), commonly used statistical techniques—e.g., summarizing data with arithmetic mean and standard deviation and fitting data using a linear, least-squares algorithm—are prone to large errors. The paper recommends statistical methods that distinguish between real data and artifacts, subject to the assumption that real data (J) are independent and log-normally distributed. Selecting a precise and accurate (conditional on these assumptions) method yields updated values of β and J0 for charge transport across both odd and even n-alkanethiols (with 99% confidence intervals) and explains that the so-called odd–even effect (for n-alkanethiols on Ag) is largely due to a difference in J0 between odd and even n-alkanethiols. This conclusion is provisional, in that it depends to some extent on the statistical model assumed, and these assumptions must be tested by future experiments.Chemistry and Chemical BiologyEngineering and Applied Science
Recommended from our members
Exploiting non-equilibrium phase separation for self-assembly
Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one article species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns.Chemistry and Chemical Biolog
Recommended from our members
Analog Modeling of Worm-Like Chain Molecules Using Macroscopic Beads-on-a-String
This paper describes an empirical model of polymer dynamics, based on the agitation of millimeter-sized polymeric beads. Although the interactions between the particles in the macroscopic model, and those between the monomers of molecular-scale polymers, are fundamentally different, both systems follow the Worm-Like Chain theory.Chemistry and Chemical BiologyPhysic
Recommended from our members
A Simple Two-Dimensional Model System to Study Electrostatic-Self-Assembly
This paper surveys the variables controlling the lattice structure and charge in macroscopic Coulombic crystals made from electrically charged, millimeter-sized polymer objects (spheres, cubes, and cylinders). Mechanical agitation of these objects inside planar, bounded containers caused them to charge electrically through contact electrification, and to self-assemble. The processes of electrification and self-assembly, and the characteristics of the assemblies, depended on the type of motion used for agitation, on the type of materials used for the objects and the dish, on the size and shape of the objects and the dish, and on the number of objects. Each of the three different materials in the system (of the dish and of the two types of spheres) influenced the electrification. Three classes of structures formed by self-assembly, depending on the experimental conditions: two-dimensional lattices, one-dimensional chains, and zero-dimensional ‘rosettes’. The lattices were characterized by their structure (disordered, square, rhombic, or hexagonal) and by the electrical charges of individual objects; the whole lattices were approximately electrically neutral. The lattices observed in this study were qualitatively different from ionic crystals; the charge of objects had practically continuous values which changed during agitation and self-assembly, and depended on experimental conditions which included the lattice structure itself. The relationship between charge and structure led to the coexistence of regions with different lattice structures within the same assembly, and to transformations between different lattice structures during agitation.Chemistry and Chemical Biolog
Chemical tuning of Coulomb blockade at room-temperature in ultra-small platinum nanoparticle self-assemblies
This work describes self-assemblies of ultra-small platinum nanoparticles, the electrical properties of which can be adjusted through slight modifications of the assemblies' constituents. Elaborating such systems, stable in air for months, is a first step towards nanoelectronic systems, where the charging energy of the nanoparticles is tuned by the nature of the ligands
Bidimensional lamellar assembly by coordination of peptidic homopolymers to platinum nanoparticles
A key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory–Huggins solution theory supplemented by the critical influence of the volume fraction of the block components. Here we show that a completely different approach can lead to tunable 2D lamellar organization of nanoparticles with homopolymers only, on condition that few elementary rules are respected: 1) the polymer spontaneously allows a structural preorganization, 2) the polymer owns functional groups that interact with the nanoparticle surface, 3) the nanoparticles show a surface accessible for coordination
Progression of myopia in children and teenagers: a nationwide longitudinal study
Background: Data on myopia prevalence and progression in European children are sparse. The aim of this work was to evaluate the progression of myopia in children and teenagers in a large prospective study.
Methods: A prospective study involving a nationwide cohort. Myopia was defined as a spherical equivalent (SE) of ≤ –0.50 diopters (D). Data on refractive error, gender and age were collected in 696 optical centres in France between 2013 and 2019, including 136 333 children (4–17 years old) in the analysis.
Progression of myopia was assessed between the first visit and the last visit over up to 6.5 years.
Results: Mean age was 11.3±3.8 years (55.0% of female). The proportion of children progressing more than –0.50 D per year was higher in age groups 7–9 years and 10–12 years and in children with SE ≤ –4.00 D at first visit, representing 33.1%, 29.4% and 30.0% of these groups, respectively. In multivariate analysis, progression during the first 11–24 months was higher in the 7–9 and 10–12 age groups (–0.43 D and –0.42 D, respectively), for higher SE at baseline (at least –0.33 D for SE ≤ –1 D) and for girls (–0.35 D).
Conclusion: This is the first French epidemiological study to investigate myopia progression in a large-scale cohort of children. Sex, age groups and myopia severity are associated with differing rates of progression
Recommended from our members
Using Magnetic Levitation for Non-Destructive Quality Control of Plastic Parts
Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated.Chemistry and Chemical Biolog
- …