20 research outputs found

    Life History, Demography, And Ecology Of The Spiny Dogfish "Squalus Acanthias" In The Gulf Of Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2010The spiny dogfish (Squalus acanthias) is a small, cosmopolitan shark species, common in sub-tropical and sub-arctic waters. The species is often targeted commercially in most areas of the world throughout its range, and in some cases it is overfished or the subject of conservation concern. In the Gulf of Alaska, spiny dogfish are not targeted and not generally retained, but incidental catches can be high for this schooling species. Previously, biological parameters for spiny dogfish in the Gulf of Alaska were assumed from estimates for this specie's neighboring areas, including British Columbia and Washington State. The purpose of this study was to examine spiny dogfish in the Gulf of Alaska and estimate important parameters for stock assessment in four stages: (1) general biology, distribution, and life history; (2) modeling age and growth; (3) population demographic modeling; and (4) ecological interactions revealed by diet analysis. Spiny dogfish are similar in length in the Gulf of Alaska to neighboring regions, but mature at larger sizes and have a greater fecundity than reported elsewhere. There is high natural variability in estimated ages for the species, which is reflected in the poor fit of the growth models, possibly owing to measurement error from using the dorsal fin spine as the aging structure. A two-phase growth model provided the statistical best fit. However, questions were raised about the biological interpretation of the model and whether more traditional models (e.g., von Bertalanffy and Gompertz) may be more appropriate. Using the life-history and growth data, Leslie matrix type age- and stage-based demographic models were created to estimate sustainable fishing mortality rates and to examine the risk of harvest scenarios. Female Gulf of Alaska spiny dogfish can support up to a 3% annual harvest rate; fisheries that target juveniles have the greatest risk of population decline below threshold levels. Spiny dogfish are generalist opportunistic feeders that feed on whichever prey is available, however shrimp are the most important prey type, followed by cephalopods. Results of this study will be used in future ecosystem modeling and stock assessments for this species. Taking into account the history of targeted fisheries for the species on the U.S. east coast and in British Columbia and Washington, as well as the susceptibility of the species to overfishing, fishery managers will need to take a cautious approach should a target fishery develop in the Gulf of Alaska

    Age and growth of spiny dogfish (Squalus acanthias) in the Gulf of Alaska: analysis of alternative growth models

    Get PDF
    Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively

    Origins of the Greenland shark (Somniosus microcephalus): Impacts of ice-olation and introgression

    Get PDF
    Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale

    Two representative 365-day tracks for one northern (triangles) spiny dogfish and one southern (squares) spiny dogfish.

    No full text
    <p>Deployment sites (north = Maine, south = North Carolina) are indicated by green circles. Colors of points represent different months throughout the year.</p

    Estimated 95% and 50% UDs for northern (A) and southern (B) spiny dogfish tags.

    No full text
    <p>95% UD or total home range (light red bounding area) for the northern dogfish extends from Maine to Maryland, while the 50% UD or concentrated usage core space (dark red central area) lies between approximately Rockland, ME and Cape Cod, MA. The red points are the geolocations used to calculate the UDs. 95% UD (light grey bounding area) for the southern dogfish lies between approximately Cape Cod, MA and Georgia, while the 50% UD (black central area) extends from the Delaware/Maryland line and Outer Banks, NC. The black points are the geolocations used to calculate the UDs.</p

    Circular (directional) seasonal histograms show the direction and magnitude of the majority of movement from individual geolocation points for the northern (A) and southern (B) tags.

    No full text
    <p>Circular (directional) seasonal histograms show the direction and magnitude of the majority of movement from individual geolocation points for the northern (A) and southern (B) tags.</p

    Northern aggregate geolocation points (A) span the area between Rockland, ME (∌44°N) and the Virginia/North Carolina line (∌36°N), with the majority (67%) between Rockland, ME and Cape Cod, MA and few (33%) south of Cape Cod.

    No full text
    <p>The majority (73%) of southern aggregate geolocation points (B) span the area between Albemarle Sound, VA (∌36°N) and New Smyrna Beach, FL (∌29°N), while the remaining points (27%) reach as far as Cape Cod. Tag deployment sites are marked in the Gulf of Maine (northern tags) and off the coast of North Carolina (southern tags).</p
    corecore