1,152 research outputs found

    Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas

    Full text link
    We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.Comment: Major revision: higher resolution simulations lead to significantly different conclusions. 26 pages, 10 figure

    Lambda hyperonic effect on the normal driplines

    Full text link
    A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur

    Three-body decay of 6^{6}Be

    Get PDF
    Three-body correlations for the ground-state decay of the lightest two-proton emitter 6^{6}Be are studied both theoretically and experimentally. Theoretical studies are performed in a three-body hyperspherical-harmonics cluster model. In the experimental studies, the ground state of 6^{6}Be was formed following the α\alpha decay of a 10^{10}C beam inelastically excited through interactions with Be and C targets. Excellent agreement between theory and experiment is obtained demonstrating the existence of complicated correlation patterns which can elucidate the structure of 6^{6}Be and, possibly, of the A=6 isobar.Comment: 17 pages, 21 figures, 5 table

    Magnetic Field Evolution in Merging Clusters of Galaxies

    Get PDF
    We present initial results from the first 3-dimensional numerical magnetohydrodynamical (MHD) simulations of magnetic field evolution in merging clusters of galaxies. Within the framework of idealized initial conditions similar to our previous work, we look at the gasdynamics and the magnetic field evolution during a major merger event in order to examine the suggestion that shocks and turbulence generated during a cluster/subcluster merger can produce magnetic field amplification and relativistic particle acceleration and, as such, may play a role in the formation and evolution of cluster-wide radio halos. The ICM, as represented by the equations of ideal MHD, is evolved self-consistently within a changing gravitational potential defined largely by the collisionless dark matter component represented by an N-body particle distribution. The MHD equations are solved by the Eulerian, finite-difference code, ZEUS. The particles are evolved by a standard particle-mesh (PM) code. We find significant evolution of the magnetic field structure and strength during two distinct epochs of the merger evolution.Comment: 21 pages, 7 figures, Figure 2 is color postscript. Accepted for publication in Ap

    Experimental Validation of the Largest Calculated Isospin-Symmetry-Breaking Effect in a Superallowed Fermi Decay

    Get PDF
    A precision measurement of the gamma yields following the beta decay of 32Cl has determined its isobaric analogue branch to be (22.47^{+0.21}_{-0.19})%. Since it is an almost pure Fermi decay, we can also determine the amount of isospin-symmetry breaking in this superallowed transition. We find a very large value, delta_C=5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly-calculated, yet smaller, corrections that are currently applied to 0+ -> 0+ transitions for tests of the Standard Model

    Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions

    Get PDF
    The Trojan Horse method is a powerful indirect technique that provides information to determine astrophysical factors for binary rearrangement processes x+Ab+Bx + A \to b + B at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction a+Ay+b+Ba + A \to y+ b + B in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions based on the half-off-energy-shell R matrix approach which takes into account the off-energy-shell effects and initial and final state interactions.Comment: 6 pages and 1 figur

    Molecular Structures in T=1 states of 10B

    Full text link
    Multi-center (molecular) structures can play an important role in light nuclei. The highly deformed rotational band in 10Be with band head at 6.179 MeV has been observed recently and suggested to have an exotic alpha:2n:alpha configuration. A search for states with alpha:pn:alpha two-center molecular configurations in 10B that are analogous to the states with alpha:2n:alpha structure in 10Be has been performed. The T=1 isobaric analog states in 10B were studied in the excitation energy range of E=8.7-12.1 MeV using the reaction 1H(9Be,alpha)6Li*(T=1, 0+, 3.56 MeV). An R-matrix analysis was used to extract parameters for the states observed in the (p,alpha) excitation function. Five T=1 states in 10B have been identified. The known 2+ and 3- states at 8.9 MeV have been observed and their partial widths have been measured. The spin-parities and partial widths for three higher lying states were determined. Our data support theoretical predictions that the 2+ state at 8.9 MeV (isobaric analog of the 7.54 MeV state in 10Be) is a highly clustered state and can be identified as a member of the alpha:np:alpha rotational band. The next member of this band, the 4+ state, has not been found. A very broad 0+ state at 11 MeV that corresponds to pure alpha+6Li(0+,T=1) configuration is suggested and it might be related to similar structures found in 12C, 18O and 20Ne.Comment: 10 pages, 10 figures, accepted in Physical Review

    Asymptotic Normalization Coefficients for 13C+p->14N

    Get PDF
    The 13C(14N,13C)14N^{13}C(^{14}N,^{13}C)^{14}N proton exchange reaction has been measured at an incident energy of 162 MeV. Angular distributions were obtained for proton transfer to the ground and low lying excited states in 14N^{14}N. Elastic scattering of 14N^{14}N on 13C^{13}C also was measured out to the rainbow angle region in order to find reliable optical model potentials. Asymptotic normalization coefficients for the system 13C+p14N^{13}C+p\to {}^{14}N have been found for the ground state and the excited states at 2.313, 3.948, 5.106 and 5.834 MeV in 14N^{14}N. These asymptotic normalization coefficients will be used in a determination of the S-factor for 7Be(p,γ)8B^{7}Be(p,\gamma)^{8}B at solar energies from a measurement of the proton transfer reaction 14N(7Be,8B)13C^{14}N(^{7}Be,^{8}B)^{13}C.Comment: 5 pages, 6 figure

    Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron Beta-Decay

    Get PDF
    The correlation coefficients a, A, and B in neutron beta-decay are proportional to the ratio of the axial-vector to vector weak coupling constants, g_A/g_V, to leading recoil order. With the advent of the next generation of neutron decay experiments, the recoil-order corrections to these expressions become experimentally accessible, admitting a plurality of Standard Model (SM) tests. The measurement of both a and A, e.g., allows one to test the conserved-vector-current (CVC) hypothesis and to search for second-class currents (SCC) independently. The anticipated precision of these measurements suggests that the bounds on CVC violation and SCC from studies of nuclear beta-decay can be qualitatively bettered. Departures from SM expectations can be interpreted as evidence for non-V-A currents.Comment: 4 pages, REVTeX, intro. broadened, typos fixed, to appear in PR

    Hypothermic retrograde venous perfusion with adenosine cools the spinal cord and reduces the risk of paraplegia after thoracic aortic clamping

    Get PDF
    AbstractObjective: We evaluated the utility of retrograde venous perfusion to cool the spinal cord and protect neurologic function during aortic clamping. We hypothesized that hypothermic adenosine would preserve the spinal cord during ischemia. Methods: Six swine (group I) underwent thoracic aortic occlusion for 30 minutes at normothermia. Group II animals underwent spinal cooling by retrograde perfusion of the paravertebral veins with hypothermic (4°C) saline solution during aortic occlusion. The spinal cords of group III animals were cooled with a hypothermic adenosine solution in a similar fashion. Intrathecal temperature was monitored and somatosensory evoked potentials assessed the functional status of spinal pathways. Results: Spinal cooling without systemic hypothermia significantly improved neurologic Tarlov scores in group III (4.8 ± 0.2) and group II (3.8 ± 0.4) when compared with group I scores (1.3 ± 0.6) (P < .001). Furthermore, 5 of the 6 animals in group III displayed completely normal neurologic function, whereas only one animal in group II and no animals in group I did (P = .005). Somatosensory evoked potentials were lost 10.6 ± 1.4 minutes after ischemia in group I. In contrast, spinal cooling caused rapid cessation of neural transmission with loss of somatosensory evoked potentials at 6.9 ± 1.2 minutes in group II and 7.0 ± 0.8 minutes in group III (P = .06). Somatosensory evoked potential amplitudes returned to 85% of baseline in group III and 90% of baseline in group II compared with only 10% of baseline in group I (P = .01). Conclusions: We conclude that retrograde cooling of the spinal cord is possible and protects against ischemic injury and that adenosine enhances this effect. The efficacy of this method may be at least partly attributed to a more rapid reduction in metabolic and electrical activity of the spinal cord during ischemia. (J Thorac Cardiovasc Surg 2000;119:588-95
    corecore