705 research outputs found

    Development of the Neuron Assessment for Measuring Biology Students’ Use of Experimental Design Concepts and Representations

    Get PDF
    Researchers, instructors, and funding bodies in biology education are unanimous about the importance of developing students’ competence in experimental design. Despite this, only limited measures are available for assessing such competence development, especially in the areas of molecular and cellular biology. Also, existing assessments do not measure how well students use standard symbolism to visualize biological experiments. We propose an assessment-design process that 1) provides background knowledge and questions for developers of new “experimentation assessments,” 2) elicits practices of representing experiments with conventional symbol systems, 3) determines how well the assessment reveals expert knowledge, and 4) determines how well the instrument exposes student knowledge and difficulties. To illustrate this process, we developed the Neuron Assessment and coded responses from a scientist and four undergraduate students using the Rubric for Experimental Design and the Concept-Reasoning Mode of representation (CRM) model. Some students demonstrated sound knowledge of concepts and representations. Other students demonstrated difficulty with depicting treatment and control group data or variability in experimental outcomes. Our process, which incorporates an authentic research situation that discriminates levels of visualization and experimentation abilities, shows potential for informing assessment design in other disciplines

    A Constraint-based model of Dynamic Island Biogeography: environmental history and species traits predict hysteresis in populations and communities

    Get PDF
    A Constraint-based model of Dynamic Island Biogeography: environmental history and species traits predict hysteresis in populations and communities We present a conceptual model that shows how hysteresis can emerge in dynamic island systems given simple constraints on trait-mediated processes. Over time, many islands cycle between phases of increasing and decreasing size and connectivity to a mainland species pool. As these phases alternate, the dominant process driving species composition switches between colonization and extinction. Both processes are mediated by interactions between organismal traits and environmental constraints: colonization probability is affected by a species’ ability to cross the intervening matrix between a population source and the island; population persistence (or extinction) is driven by the minimum spatial requirements for sustaining an isolated population. Because different suites of traits often mediate these two processes, similar environmental conditions can lead to differences in species compositions at two points of time. Thus, the Constraint-based model of Dynamic Island Biogeography (C-DIB) illustrates the possible role of hysteresis—the dependency of outcomes not only on the current system state but also the system’s history of environmental change—in affecting populations and communities in insular systems. The model provides a framework upon which additional considerations of lag times, biotic interactions, evolution, and other processes can be incorporated. Importantly, it provides a testable framework to study the physical and biological constraints on populations and communities across diverse taxa, scales, and systems

    Spatial metallicity distribution statistics at 100\lesssim 100 pc scales in the AMUSING++ nearby galaxy sample

    Full text link
    We analyse the spatial statistics of the 2D gas-phase oxygen abundance distributions in a sample of 219 local galaxies. We introduce a new adaptive binning technique to enhance the signal-to-noise ratio of weak lines, which we use to produce well-filled metallicity maps for these galaxies. We show that the two-point correlation functions computed from the metallicity distributions after removing radial gradients are in most cases well described by a simple injection-diffusion model. Fitting the data to this model yields the correlation length lcorrl_{\rm corr}, which describes the characteristic interstellar medium mixing length scale. We find typical correlation lengths lcorr1l_{\rm corr} \sim 1 kpc, with a strong correlation between lcorrl_{\rm corr} and stellar mass, star formation rate, and effective radius, a weak correlation with Hubble type, and significantly elevated values of lcorrl_{\rm corr} in interacting or merging galaxies. We show that the trend with star formation rate can be reproduced by a simple transport+feedback model of interstellar medium turbulence at high star formation rate, and plausibly also at low star formation rate if dwarf galaxy winds have large mass-loading factors. We also report the first measurements of the injection width that describes the initial radii over which supernova remnants deposit metals. Inside this radius the metallicity correlation function is not purely the product of a competition between injection and diffusion. We show that this size scale is generally smaller than 60 pc.Comment: 18 pages, 18 figures, 1 table, submitted to MNRAS. Comments are welcom

    Drought at a coastal wetland affects refuelling and migration strategies of shorebirds

    Get PDF
    Droughts can affect invertebrate communities in wetlands, which can have bottom-up effects on the condition and survival of top predators. Shorebirds, key predators at coastal wetlands, have experienced widespread population declines and could be negatively affected by droughts. We explored, in detail, the effects of drought on multiple aspects of shorebird stopover and migration ecology by contrasting a year with average wet/dry conditions (2016) with a year with moderate drought (2017) at a major subarctic stopover site on southbound migration. We also examined the effects of drought on shorebird body mass during stopover across 14 years (historical: 1974–1982 and present-day: 2014–2018). For the detailed comparison of two years, in the year with moderate drought we documented lower invertebrate abundance at some sites, higher prey family richness in shorebird faecal samples, lower shorebird refuelling rates, shorter stopover durations for juveniles, and, for most species, a higher probability of making a subsequent stopover in North America after departing the subarctic, compared to the year with average wet/dry conditions. In the 14-year dataset, shorebird body mass tended to be lower in drier years. We show that even short-term, moderate drought conditions can negatively affect shorebird refuelling performance at coastal wetlands, which may carry-over to affect subsequent stopover decisions. Given shorebird population declines and predicted changes in the severity and duration of droughts with climate change, researchers should prioritize a better understanding of how droughts affect shorebird refuelling performance and survival

    The Basic Competencies of Biological Experimentation: Concept-Skill Statements

    Get PDF
    This biological experimentation competencies map is a model created by members of the ACE-Bio Network of seven areas a competent biologist calls in when doing experimentation in biology. Each competency is represented by a summary word on a uniquely colored segment of the model. For presentation convenience, the seven major areas within experimentation in biology are mapped onto tables in a linear manner. However, this is not meant to convey a particular order that one must follow during experimentation. The areas are given equal weight and flexible order of their use throughout the process of experimentation. This work is meant to provide a framework for ACE Bio Network participants and other instructors or academic leaders in the biological sciences to study implementation of experimentation activities and assessments across diverse institutional and curricular contexts. In addition to the document in pdf format, another link provides the file in MSWord format so that users can easily modify it to guide assessment of student learning about experimentation, undergraduate biology instruction, curriculum development, professional faculty development, program evaluation, or review of research literature in a way that is appropriate to their own context

    Dreaming of drams: Authenticity in Scottish whisky tourism as an expression of unresolved Habermasian rationalities

    Get PDF
    In this paper, the production of whisky tourism at both independently owned and corporately owned distilleries in Scotland is explored by focusing on four examples (Arran, Glengoyne, Glenturret and Bruichladdich). In particular, claims of authenticity and Scottishness of Scottish whiskies through commercial materials, case studies, website-forum discussions and 'independent' writing about such whisky are analysed. It is argued that the globalisation and commodification of whisky and whisky tourism, and the communicative backlash to these trends typified by the search for authenticity, is representative of a Habermasian struggle between two irreconcilable rationalities. This paper will demonstrate that the meaning and purpose of leisure can be understood through such explorations of the tension between the instrumentality of commodification and the freedom of individuals to locate their own leisure lives in the lifeworld that remains. © 2011 Taylor & Francis

    Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    Get PDF
    Food webs, networks of feeding relationships among organisms, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. Despite long-standing interest in the compartmental structure of food webs, past network analyses of food webs have been constrained by a standard definition of compartments, or modules, that requires many links within compartments and few links between them. Empirical analyses have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure in food webs using a flexible definition of a group that can describe both functional roles and standard compartments. The Serengeti ecosystem provides an opportunity to examine structure in a newly compiled food web that includes species-level resolution among plants, allowing us to address whether groups in the food web correspond to tightly-connected compartments or functional groups, and whether network structure reflects spatial or trophic organization, or a combination of the two. We have compiled the major mammalian and plant components of the Serengeti food web from published literature, and we infer its group structure using our method. We find that network structure corresponds to spatially distinct plant groups coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial patterns, in contrast to the standard compartments typically identified in ecological networks. From data consisting only of nodes and links, the group structure that emerges supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting
    corecore