218 research outputs found

    Recombinant Filaggrin Is Internalized and Processed to Correct Filaggrin Deficiency

    Get PDF
    This study was designed to engineer a functional filaggrin (FLG) monomer linked to a cell-penetrating peptide (RMR) and to test the ability of this peptide to penetrate epidermal tissue as a therapeutic strategy for genetically determined atopic dermatitis (AD). A single repeat of the murine filaggrin gene (Flg) was covalently linked to a RMR motif and cloned into a bacterial expression system for protein production. Purified FLG+RMR (mFLG+RMR) was applied in vitro to HEK-293T cells and a reconstructed human epidermis (RHE) tissue model. Immunochemistry demonstrated RMR-dependent cellular uptake of FLG+RMR in a dose- and time-dependent manner in HEK cells. Immunohistochemical staining of the RHE model identified penetration of FLG+RMR to the stratum granulosum, the epidermal layer at which FLG deficiency is thought to be pathologically relevant. In vivo application of FLG+RMR to FLG-deficient flaky tail (ft/ft) mice skin demonstrated internalization and processing of recombinant FLG+RMR to restore the normal phenotype. These results suggest that topically applied RMR-linked FLG monomers are able to penetrate epidermal tissue, be internalized into the appropriate cell type, and be processed to a size similar to wild-type functional barrier peptides to restore necessary barrier function, and prove to be therapeutic for patients with AD

    Inhibition of Ocular Tumor and Endothelial Cell Growth with a TEAD4216 Peptide Fragment

    Get PDF
    Purpose: Transcriptional enhancer factor 1-related (RTEF-1) also known as TEAD4 is expressed in ocular vascular endothelial cells and plays a role in the control of VEGF expression. Alternative processing of TEAD4 hnRNA results in different proteins able to stimulate or inhibit VEGF gene transcription. The purpose of this study is to test whether short peptide fragments (STY-RMR), representing functional domains of the inhibitory TEAD4216 isoform, can inhibit tumor as well as endothelial cell proliferation.Experimental Design: Cell proliferation was assessed using a colorimetric assay in cell lines incubated with STY-RMR, the amount of secreted VEGF within media was determined both in treated and control cell lines.Results: Significant dose dependent inhibition of cell proliferation was observed. Maximal inhibition of ocular melanoma (Mel 202 and Mel 207) cell proliferation was observed at a dose of 30 mg/100ml of STY-RMR (87% and 60% inhibition, respectively). At the same dose, more than 50% inhibition was observed in retinoblastoma and breast cancer cells (P <0.001). Significant inhibition of primate ocular endothelial cell proliferation (42% at 30 mg/100 ml (p < 0.001), and retinal pigment epithelial cells showed also a 75% inhibition (p = 0.007). Secreted VEGF was decreased in the media of all tested cell lines that had been exposed to STY-RMR.Conclusion: Functional short peptide domains derived from the TEAD4216 isoform may prove to be useful for treatment of ocular tumors and other VEGF dependent neovascular disease.Inhibition of proliferation and VEGF production within ocular endothelial cells indicate the potential of this agent to treat age-related macular degeneration (ARMD) and diabetic retinopathy (DR)

    The Related Transcriptional Enhancer Factor-1 Isoform, TEAD4216, Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells

    Get PDF
    Increased cellular production of vascular endothelial growth factor (VEGF) is responsible for the development and progression of multiple cancers and other neovascular conditions, and therapies targeting post-translational VEGF products are used in the treatment of these diseases. Development of methods to control and modify the transcription of the VEGF gene is an alternative approach that may have therapeutic potential. We have previously shown that isoforms of the transcriptional enhancer factor 1-related (TEAD4) protein can enhance the production of VEGF. In this study we describe a new TEAD4 isoform, TEAD4216, which represses VEGF promoter activity. The TEAD4216 isoform inhibits human VEGF promoter activity and does not require the presence of the hypoxia responsive element (HRE), which is the sequence critical to hypoxia inducible factor (HIF)-mediated effects. The TEAD4216 protein is localized to the cytoplasm, whereas the enhancer isoforms are found within the nucleus. The TEAD4216 isoform can competitively repress the stimulatory activity of the TEAD4434 and TEAD4148 enhancers. Synthesis of the native VEGF165 protein and cellular proliferation is suppressed by the TEAD4216 isoform. Mutational analysis indicates that nuclear or cytoplasmic localization of any isoform determines whether it acts as an enhancer or repressor, respectively. The TEAD4216 isoform appears to inhibit VEGF production independently of the HRE required activity by HIF, suggesting that this alternatively spliced isoform of TEAD4 may provide a novel approach to treat VEGF-dependent diseases

    Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies

    Get PDF
    Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world‐wide survey to ISEV members to assess methods considered ‘best practices’ for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δ_(CP) values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δ_(CP) values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin²θ₁₃ to current reactor experiments

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design

    Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach
    corecore