41 research outputs found

    Targeted Protein Detection using an All-In-One Mass Spectrometry Cartridge

    Get PDF
    We developed a simple 3D printed cartridge for mass spectrometry (MS) targeted detection of plasma proteins, including post-translational modifications (PTMs). The cartridge uses an integrated antibody enrichment column to preconcentrate the protein target as well as a novel built-in substrate to ionize the protein targets for MS detection. We show several examples of using this cartridge to perform rapid detection of clinically significant proteoforms from plasma samples

    Molecular Mechanism Underlying Persistent Induction of LCN2 by Lipopolysaccharide in Kidney Fibroblasts

    Get PDF
    The neutrophil gelatinase-associated lipocalin 2 (LCN2) is a critical inflammatory mediator persistently induced during endotoxemia, contributing to tubular damage and kidney failure. The intracellular process responsible for persistent induction of LCN2 by bacterial endotoxin Lipopolysaccharide (LPS) is not well understood. Using primary kidney fibroblasts, we observed that LPS-induced LCN2 expression requires a coupled circuit involving an early transient phase of AP-1 path and a late persistent phase of C/EBPδ path, both of which are dependent upon the interleukin 1 receptor associated kinase 1 (IRAK-1). Using immunoprecipitation analysis we observed transient binding of AP-1 to the promoters of both TNFα and C/ebpδ. On the other hand, we only observed persistent binding of C/EBPδ to its own promoter but not on TNFα. Blockage of new protein synthesis using cyclohexamide significantly reduced the expression of C/EBPδ as well as LCN2. By chromatin immunoprecipitation analyses, we demonstrated that LPS recruited C/EBPδ to the Lcn2 promoter in WT, but not IRAK-1 deficient fibroblasts. A differential equation-based computational model captured the dynamic circuit leading to the persistent induction of LCN2. In vivo, we observed elevated levels of LCN2 in kidneys harvested from LPS-injected WT mice as compared to IRAK-1 deficient mice. Taken together, this study has identified an integrated intracellular network involved in the persistent induction of LCN2 by LPS

    Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry

    Get PDF
    Paper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL−1 range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL−1 to 1.25 ng mL−1 in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL−1. Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples

    Paper Spray Ionization: Applications and Perspectives

    Get PDF
    Paper spray ionization has grown to become one of the most successful ambient ionization methods within the past decade. Requiring little to no sample preparation and being remarkably simple to construct, this technique has seen application in a wide number of fields. This review approaches the mechanism of how paper spray works, and seeks to better classify what it is and is not in a rapidly expanding field of ambient techniques. Additionally, many applications of the technique in clinical, forensic, environmental, and reaction monitoring regimes are explored. Finally, perspectives towards the future of how paper spray could be utilized will be expanded upon, including unexplored substrates and possibilities for the 'omics space

    Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in Aspergillus nidulans

    Get PDF
    The fungal cell-wall integrity signaling (CWIS) pathway regulates cellular response to environmental stress to enable wall repair and resumption of normal growth. This complex, interconnected, pathway has been only partially characterized in filamentous fungi. To better understand the dynamic cellular response to wall perturbation, a-glucan synthase inhibitor (micafungin) was added to a growing A. nidulans shake-flask culture. From this flask, transcriptomic and phosphoproteomic data were acquired over 10 and 120 min, respectively. To differentiate statistically-significant dynamic behavior from noise, a multivariate adaptive regression splines (MARS) model was applied to both data sets. Over 1800 genes were dynamically expressed and over 700 phosphorylation sites had changing phosphorylation levels upon micafungin exposure. Twelve kinases had altered phosphorylation and phenotypic profiling of all non-essential kinase deletion mutants revealed putative connections between PrkA, Hk-8 –4, and Stk19 and the CWIS pathway. Our collective data implicate actin regulation, endocytosis, and septum formation as critical cellular processes responding to activation of the CWIS pathway, and connections between CWIS and calcium, HOG, and SIN signaling pathways

    Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by “Paper-Spray” Ionization

    Get PDF
    Paper spray ionization mass spectrometry offers a rapid alternative platform requiring no sample preparation. Aerosolized chemical warfare agent (CWA) simulants trimethyl phosphate, dimethyl methylphosphonate, and diisopropyl methylphosphonate were captured by passing air through a glass fiber filter disk within a disposable paper spray cartridge. CWA simulants were aerosolized at varying concentrations using an in-house built aerosol chamber. A custom 3D-printed holder was designed and built to facilitate the aerosol capture onto the paper spray cartridges. The air flow through each of the collection devices was maintained equally to ensure the same volume of air sampled across methods. Each approach yielded linear calibration curves with R2 values between 0.98–0.99 for each compound and similar limits of detection in terms of disbursed aerosol concentration. While the glass fiber filter disk has a higher capture efficiency (≈40%), the paper spray method produces analogous results even with a lower capture efficiency (≈1%). Improvements were made to include glass fiber filters as the substrate within the paper spray cartridge consumable. Glass fiber filters were then treated with ammonium sulfate to decrease chemical interaction with the simulants. This allowed for improved direct aerosol capture efficiency (>40%). Ultimately, the limits of detection were reduced to levels comparable to current worker population limits of 1 × 10–6 mg/m3

    UNC2025 , a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor

    Get PDF
    We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined

    Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    Get PDF
    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.Comment: 15 pages, 8 figures, submitte

    Loss of IRAK-1 causes decreased expression of <i>Lcn2</i> mRNA and protein <i>in vivo</i>.

    No full text
    <p>WT and IRAK-1<sup>−/−</sup> C57/BL/6 female mice of 12 weeks old (6 each) were intraperitoneally injected with either 30 mg/kg of LPS or PBS for 6 hours. (A) Kidney tissues were extracted and subject to RNA extraction. <i>Lcn2</i> transcripts were measured by qRT-PCR assays and standardized against their respective controls (mice receiving PBS injections). Data is depicted as three separate mice (both WT and IRAK-1<sup>−/−</sup>). *<i>P</i><0.05 (B) Protein lysates were extracted from the kidney tissues and subjected to Western blot. Blots were analyzed using LCN2 specific antibodies. The same blot was probed with β-actin as a loading control.</p

    LPS stimulation induces a persistent induction of LCN2 in kidney fibroblasts.

    No full text
    <p>(A) LPS (100 ng/ml) induces a transient induction of <i>Tnfα</i> mRNA. (B) LPS (100 ng/ml) induces a persistent induction of <i>Lcn2</i> mRNA Transcript levels were measured by qRT-PCR as described above. The results are expressed as means +/− standard deviation performed in triplicate. (C) LCN2 protein levels persist after 24 hours of LPS stimulation. The levels of LCN2 were visualized by western blot.</p
    corecore