45 research outputs found

    Estimating the potential blue carbon gains from tidal marsh rehabilitation: A case study from south eastern Australia

    Get PDF
    © Copyright © 2020 Gulliver, Carnell, Trevathan-Tackett, Duarte de Paula Costa, MasquĂ© and Macreadie. Historically, coastal “blue carbon” ecosystems (tidal marshes, mangrove forests, seagrass meadows) have been impacted and degraded by human intervention, mainly in the form of land acquisition. With increasing recognition of the role of blue carbon ecosystems in climate mitigation, protecting and rehabilitating these ecosystems becomes increasingly more important. This study evaluated the potential carbon gains from rehabilitating a degraded coastal tidal marsh site in south-eastern Australia. Tidal exchange at the study site had been restricted by the construction of earthen barriers for the purpose of reclaiming land for commercial salt production. Analysis of sediment cores (elemental carbon and 210Pb dating) revealed that the site had stopped accumulating carbon since it had been converted to salt ponds 65 years earlier. In contrast, nearby recovered (“control”) tidal marsh areas are still accumulating carbon at relatively high rates (0.54 tons C ha–1year–1). Using elevation and sea level rise (SLR) data, we estimated the potential future distribution of tidal marsh vegetation if the earthen barrier were removed and tidal exchange was restored to the degraded site. We estimated that the sediment-based carbon gains over the next 50 years after restoring this small site (360 ha) would be 9,000 tons C, which could offset the annual emissions of ∌7,000 passenger cars at present time (at 4.6 metric tons pa.) or ∌1,400 Australians. Overall, we recommend that this site is a promising prospect for rehabilitation based on the opportunity for blue carbon additionality, and that the business case for rehabilitation could be bolstered through valuation of other co-benefits, such as nitrogen removal, support to fisheries, sediment stabilization, and enhanced biodiversity

    Dumpster diving for diatom plastid 16S rRNA genes

    Get PDF
    High throughput sequencing is improving the efficiency of monitoring diatoms, which inhabit and support aquatic ecosystems across the globe. In this study, we explored the potential of a standard V4 515F-806RB primer pair in recovering diatom plastid 16S rRNA sequences. We used PhytoREF to classify the 16S reads from our freshwater biofilm field sampling from three stream segments across two streams in south-eastern Australia and retrieved diatom community data from other, publicly deposited, Australian 16S amplicon datasets. When these diatom operational taxonomic units (OTUs) were traced using the default RDPII and NCBI databases, 68% were characterized as uncultured cyanobacteria. We analysed the 16S rRNA sequences from 72 stream biofilm samples, separated the chloroplast OTUs, and classified them using the PhytoREF database. After filtering the reads attributed to Bacillariophyta (relative abundance >1%), 71 diatom OTUs comprising more than 90% of the diatom reads in each stream biofilm sample were identified. Beta-diversity analyses demonstrated significantly different diatom assemblages and discrimination among river segments. To further test the approach, the diatom OTUs from our biofilm sampling were used as reference sequences to identify diatom reads from other Australian 16S rRNA datasets in the NCBI-SRA database. Across the three selected public datasets, 67 of our 71 diatom OTUs were detected in other Australian ecosystems. Our results show that diatom plastid 16S rRNA genes are readily amplified with existing 515F-806RB primer sets. Therefore, the volume of existing 16S rRNA amplicon datasets initially generated for microbial community profiling can also be used to detect, characterize, and map diatom distribution to inform phylogeny and ecological health assessments, and can be extended into a range of ecological and industrial applications. To our knowledge, this study represents the first attempt to classify freshwater samples using this approach and the first application of PhytoREF in Australia

    Comment on \u27Geoengineering with seagrasses: Is credit due where credit is given?\u27

    Get PDF
    Over the past decade scientists around the world have sought to estimate the capacity of seagrass meadows to sequester carbon, and thereby understand their role in climate change mitigation. The number of studies reporting on seagrass carbon accumulation rates is still limited, but growing scientific evidence supports the hypothesis that seagrasses have been efficiently locking away CO2 for decades to millennia (e.g. Macreadie et al 2014, Mateo et al 1997, Serrano et al 2012). Johannessen and Macdonald (2016), however, challenge the role of seagrasses as carbon traps, claiming that gains in carbon storage by seagrasses may be \u27illusionary\u27 and that \u27their contribution to the global burial of carbon has not yet been established\u27. The authors warn that misunderstandings of how sediments receive, process and store carbon have led to an overestimation of carbon burial by seagrasses. Here we would like to clarify some of the questions raised by Johannessen and Macdonald (2016), with the aim to promote discussion within the scientific community about the evidence for carbon sequestration by seagrasses with a view to awarding carbon credits

    Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance

    Get PDF
    Vegetated coastal habitats (VCHs), such as mangrove forests, salt marshes and seagrass meadows, have the ability to capture and store carbon in the sediment for millennia, and thus have high potential for mitigating global carbon emissions. Carbon sequestration and storage is inherently linked to the geochemical conditions created by a variety of microbial metabolisms, where physical disturbance of sediments may expose previously anoxic sediment layers to oxygen (O2), which could turn them into carbon sources instead of carbon sinks. Here, we used O2, hydrogen sulfide (H2S) and pH microsensors to determine how biogeochemical conditions, and thus aerobic and anaerobic metabolic pathways, vary across mangrove, salt marsh and seagrass sediments (case study from the Sydney area, Australia). We measured the biogeochemical conditions in the top 2.5 cm of surface (0–10 cm depth) and experimentally exposed deep sediments (>50 cm depth) to simulate undisturbed and physically exposed sediments, respectively, and how these conditions may affect carbon cycling processes. Mangrove surface sediment exhibited the highest rates of O2 consumption and sulfate (SO42-) reduction based on detailed microsensor measurements, with a diffusive O2 uptake rate of 102 mmol O2 m-2 d-1 and estimated sulfate reduction rate of 57 mmol Stot2- m-2 d-1. Surface sediments (0–10 cm) across all the VCHs generally had higher O2 consumption and estimated sulfate reduction rates than deeper layers (>50 cm depth). O2 penetration was <4 mm for most sediments and only down to ∌1 mm depth in mangrove surface sediments, which correlated with a significantly higher percent organic carbon content (%Corg) within sediments originating from mangrove forests as compared to those from seagrass and salt marsh ecosystems. Additionally, pH dropped from 8.2 at the sediment/water interface to <7–7.5 within the first 20 mm of sediment within all ecosystems. Prevailing anoxic conditions, especially in mangrove and seagrass sediments, as well as sediment acidification with depth, likely decreased microbial remineralisation rates of sedimentary carbon. However, physical disturbance of sediments and thereby exposure of deeper sediments to O2 seemed to stimulate aerobic metabolism in the exposed surface layers, likely reducing carbon stocks in VCHs

    A global assessment of the chemical recalcitrance of seagrass tissues: Implications for long-term carbon sequestration

    Full text link
    Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state 13 C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16%of total organic matter compared to 8–10%in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues’ contributions to long-termcarbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies

    Oxygen consumption and sulfate reduction in vegetated coastal habitats: Effects of physical disturbance

    Get PDF
    © 2019 Brodersen, Trevathan-Tackett, Nielsen, Connolly, Lovelock, Atwood and Macreadie. Vegetated coastal habitats (VCHs), such as mangrove forests, salt marshes and seagrass meadows, have the ability to capture and store carbon in the sediment for millennia, and thus have high potential for mitigating global carbon emissions. Carbon sequestration and storage is inherently linked to the geochemical conditions created by a variety of microbial metabolisms, where physical disturbance of sediments may expose previously anoxic sediment layers to oxygen (O 2 ), which could turn them into carbon sources instead of carbon sinks. Here, we used O 2 , hydrogen sulfide (H 2 S) and pH microsensors to determine how biogeochemical conditions, and thus aerobic and anaerobic metabolic pathways, vary across mangrove, salt marsh and seagrass sediments (case study from the Sydney area, Australia). We measured the biogeochemical conditions in the top 2.5 cm of surface (0-10 cm depth) and experimentally exposed deep sediments (> 50 cm depth) to simulate undisturbed and physically exposed sediments, respectively, and how these conditions may affect carbon cycling processes. Mangrove surface sediment exhibited the highest rates of O 2 consumption and sulfate (SO 42- ) reduction based on detailed microsensor measurements, with a diffusive O 2 uptake rate of 102 mmol O 2 m -2 d -1 and estimated sulfate reduction rate of 57 mmol S tot2- m -2 d -1 . Surface sediments (0-10 cm) across all the VCHs generally had higher O 2 consumption and estimated sulfate reduction rates than deeper layers (> 50 cm depth). O 2 penetration was < 4 mm for most sediments and only down to 1 mm depth in mangrove surface sediments, which correlated with a significantly higher percent organic carbon content (%C org ) within sediments originating from mangrove forests as compared to those from seagrass and salt marsh ecosystems. Additionally, pH dropped from 8.2 at the sediment/water interface to < 7-7.5 within the first 20 mm of sediment within all ecosystems. Prevailing anoxic conditions, especially in mangrove and seagrass sediments, as well as sediment acidification with depth, likely decreased microbial remineralisation rates of sedimentary carbon. However, physical disturbance of sediments and thereby exposure of deeper sediments to O 2 seemed to stimulate aerobic metabolism in the exposed surface layers, likely reducing carbon stocks in VCHs

    Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows

    Full text link
    Eutrophication can play a significant role in seagrass decline and habitat loss. Microorganisms in seagrass sediments are essential to many important ecosystem processes, including nutrient cycling and seagrass ecosystem health. However, current knowledge of the bacterial communities, both beneficial and detrimental, within seagrass meadows in response to nutrient loading is limited. We studied the response of sediment bacterial and pathogen communities to nutrient enrichment on a tropical seagrass meadow in Xincun Bay, South China Sea. The bacterial taxonomic groups across all sites were dominated by the Gammaproteobacteria and Firmicutes. Sites nearest to the nutrient source and with the highest NH4+ and PO43&minus; content had approximately double the relative abundance of putative denitrifiers Vibrionales, Alteromonadales, and Pseudomonadales. Additionally, the relative abundance of potential pathogen groups, especially Vibrio spp. and Pseudoalteromonas spp., was approximately 2‐fold greater at the sites with the highest nutrient loads compared to sites further from the source. These results suggest that proximity to sources of nutrient pollution increases the occurrence of potential bacterial pathogens that could affect fishes, invertebrates and humans. This study shows that nutrient enrichment does elicit shifts in bacterial community diversity and likely their function in local biogeochemical cycling and as a potential source of infectious diseases within seagrass meadows

    Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

    Full text link
    Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate-reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures

    The TeaComposition Initiative: Unleashing the power of international collaboration to understand litter decomposition

    Get PDF
    Collected harmonized data on global litter decomposition are of great relevance for scientists, policymakers, and for education of the next generation of researchers and environmental managers. Here we describe the TeaComposition initiative, a global and open research collaborative network to study organic matter decomposition in a standardized way allowing comparison of decomposition rate and carbon turnover across global and regional gradients of ecosystems, climate, soils etc. The TeaComposition initiative today involves 570 terrestrial and 300 aquatic ecosystems from nine biomes worldwide. Further, we describe how to get involved in the TeaComposition initiative by (a) implementing the standard protocol within your study site, (b) joining task forces in data analyses, syntheses and modelling efforts, (c) using collected data and samples for further analyses through joint projects, (d) using collected data for graduate seminars, and (e) strengthening synergies between biogeochemical research and a wide range of stakeholders. These collaborative efforts within/emerging from the TeaComposition initiative, thereby, will leverage our understanding on litter decomposition at the global scale and strengthen global collaborations essential for addressing grand scientific challenges in a rapidly changing world.This work was performed within the TeaComposition and TeaComposition H2O initiatives, carried by 290 institutions worldwide. We thank to UNILEVER for sponsoring the Lipton tea bags. The initiative is supported by the following grants: ILTER Initiative Grants, ClimMani Short-Term Scientific Missions Grants, INTERACT Remote Transnational Access and an Alfred Deakin Postdoctoral Research Fellowship. Nico Eisenhauer gratefully acknowledges the support of iDiv funded by the German Research Foundation (DFG– FZT 118, 202548816). ST-T was supported by the ARC DE210101029 and Deakin University’s ADPR Fellowship. Fernando T. Maestre acknowledges support from the European Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana (CIDEGENT/2018/041)

    A horizon scan of priorities for coastal marine microbiome research

    Get PDF
    Research into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microbes in ecosystem function. This is particularly relevant in ocean environments, where microbes constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate the Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (e.g. fisheries, water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the ‘microbiome’) and their hosts or environment – termed the ‘holobiont’. Understanding of coastal ecosystem function must therefore be framed under the holobiont concept, whereby macroorganisms and their associated microbiomes are considered as a synergistic ecological unit. Here we evaluated the current state of knowledge on coastal marine microbiome research and identified key questions within this growing research area. Although the list of questions is broad and ambitious, progress in the field is increasing exponentially, and the emergence of large, international collaborative networks and well-executed manipulative experiments are rapidly advancing the field of coastal marine microbiome research
    corecore