183 research outputs found

    Dark matter halos of massive elliptical galaxies at z0.2z \sim 0.2 are well described by the Navarro-Frenk-White profile

    Get PDF
    We investigate the internal structure of elliptical galaxies at z0.2z\sim 0.2 from a joint lensing-dynamics analysis. We model Hubble Space Telescope images of a sample of 23 galaxy-galaxy lenses selected from the Sloan Lens ACS (SLACS) survey. Whereas the original SLACS analysis estimated the logarithmic slopes by combining the kinematics with the imaging data, we estimate the logarithmic slopes only from the imaging data. We find that the distribution of the lensing-only logarithmic slopes has a median 2.08±0.032.08\pm0.03 and intrinsic scatter 0.13±0.020.13 \pm 0.02, consistent with the original SLACS analysis. We combine the lensing constraints with the stellar kinematics and weak lensing measurements, and constrain the amount of adiabatic contraction in the dark matter (DM) halos. We find that the DM halos are well described by a standard Navarro-Frenk-White halo with no contraction on average for both of a constant stellar mass-to-light ratio (M/LM/L) model and a stellar M/LM/L gradient model. For the M/LM/L gradient model, we find that most galaxies are consistent with no M/LM/L gradient. Comparison of our inferred stellar masses with those obtained from the stellar population synthesis method supports a heavy initial mass function (IMF) such as the Salpeter IMF. We discuss our results in the context of previous observations and simulations, and argue that our result is consistent with a scenario in which active galactic nucleus feedback counteracts the baryonic-cooling-driven contraction in the DM halos.Comment: 26 pages, 19 figures, 3 tables. This version: accepted to MNRA

    Pushing the Limits of Detectability: Mixed Dark Matter from Strong Gravitational Lenses

    Full text link
    One of the frontiers for advancing what is known about dark matter lies in using strong gravitational lenses to characterize the population of the smallest dark matter halos. There is a large volume of information in strong gravitational lens images -- the question we seek to answer is to what extent we can refine this information. To this end, we forecast the detectability of a mixed warm and cold dark matter scenario using the anomalous flux ratio method from strong gravitational lensed images. The halo mass function of the mixed dark matter scenario is suppressed relative to cold dark matter but still predicts numerous low-mass dark matter halos relative to warm dark matter. Since the strong lens signal is a convolution over a range of dark matter halo masses and since the signal is sensitive to the specific configuration of dark matter halos, not just the halo mass function, degeneracies between different forms of suppression in the halo mass function, relative to cold dark matter, can arise. We find that, with a set of lenses with different configurations of the main deflector and hence different sensitivities to different mass ranges of the halo mass function, the different forms of suppression of the halo mass function between the warm dark matter model and the mixed dark matter model can be distinguished with 4040 lenses with Bayesian odds of 29.4:1.Comment: 8 pages, 7 figure

    Testing the Evolution of the Correlations between Supermassive Black Holes and their Host Galaxies using Eight Strongly Lensed Quasars

    Full text link
    One of the main challenges in using high redshift active galactic nuclei to study the correlations between the mass of the supermassive Black Hole (MBH) and the properties of their active host galaxies is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed active galactic nuclei (AGN) with deep Hubble Space Telescope imaging, using the lens modelling code Lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. MBH are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGN, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGN is small and thus they provide mostly a consistency check on systematic errors related to resolution for the non-lensed AGN. However, the number of known lensed AGN is expected to increase dramatically in the next few years, through dedicated searches in ground and space based wide field surveys, and they may become a key diagnostic of black hole and galaxy co-evolution.Comment: 12 pages, 4 figures, 3 tables. MNRAS in press. Comments welcom
    corecore