10 research outputs found

    Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids

    Get PDF
    Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids

    The Epitope-Specific Anti-human CD4 Antibody MAX.16H5 and Its Role in Immune Tolerance

    Get PDF
    T cell modulation in the clinical background of autoimmune diseases or allogeneic cell and organ transplantations with concurrent preservation of their natural immunological functions (e.g., pathogen defense) is the major obstacle in immunology. An anti-human CD4 antibody (MAX.16H5) was applied intravenously in clinical trials for the treatment of autoimmune diseases (e.g., rheumatoid arthritis) and acute late-onset rejection after transplantation of a renal allograft. The response rates were remarkable and no critical allergic problems or side effects were obtained. During the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody its effector mechanisms with effects on lymphocytes, cytokines, laboratory and clinical parameters, adverse effects as well as pharmacodynamics and kinetics were studied in detail. However, as the possibility of developing immune reactions against the murine IgG1 Fc-part remains, the murine antibody was chimerized, inheriting CD4-directed variable domains of the MAX.16H5 IgG1 connected to a human IgG4 backbone. Both antibodies were studied in vitro and in specific humanized mouse transplantation models in vivo with a new scope. By ex vivo incubation of an allogeneic immune cell transplant with MAX.16H5 a new therapy strategy has emerged for the first time enabling both the preservation of the graft-vs.-leukemia (GVL) effect and the permanent suppression of the acute graft-vs.-host disease (aGVHD) without conventional immunosuppression. In this review, we especially focus on experimental data and clinical trials obtained from the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody. Insights gained from these trials have paved the way to better understand the effects with the chimerized MAX.16H5 IgG4 as novel therapeutic approach in the context of GVHD prevention

    Identification and characterization of novel CD274 (PD‐L1) regulating microRNAs and their functional relevance in melanoma

    Full text link
    Background: Immune checkpoint inhibitors directed against programmed cell death 1 (PDCD1/PD1) receptor and programmed cell death-ligand 1 (CD274/PD-L1) have been recently successfully implemented for the treatment of many cancers, but the response rate of tumour patients is still limited due to intrinsic and acquired resistances. However, the underlying molecular mechanisms of this limited response have still to be defined in detail. The aim of this study is to uncover processes inhibiting PDCD1/CD274 expression thereby enhancing anti-tumour immune responses. The identification and characterization of microRNAs (miRNAs) targeting the 3′-untranslated region (3′-UTR) as well as the coding sequence (CDS) of CD274 will provide the basis for a new drug development. Methods: Human melanoma cell lines and tissue samples were subjected to mRNA and/or protein expression analysis using qPCR, Western blot, flow cytometry, and/or immunohistochemistry. The data were correlated to clinical parameters. MiRNA trapping by RNA in vitro affinity purification (miTRAP) technology in combination with small RNA sequencing and different bioinformatics tools were employed to identify CD274-regulating miRNAs. Results: Screening based on miTRAP in combination with RNAseq identified a large number of novel CD274-regulating candidate miRNAs, from which eight selected miRNAs were functionally validated. Five out of eight miRNAs were able to significantly reduce CD274 surface expression indicating that these miRNAs directly bind to the 3′-UTR or CDS of the CD274 gene. The miRNA-mediated inhibition of CD274 expression was accompanied by an increased T cell recognition. Furthermore, an inverse expression of three CD274-regulating miRNAs and CD274 was demonstrated in melanoma lesions. A CD274 miRNA score was generated, which was associated with disease progression and reduced survival of melanoma patients. Conclusions: These data revealed a novel mechanism that miRNAs targeting the CDS of immune checkpoint genes are functional, have prognostic relevance, and also the potential for the development of novel miRNA-based therapies

    CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas. Apart from CAR-T cells, CAR-NK cells offer a safe and allogenic alternative to autologous CAR-T cell therapy. In this paper, we investigated the capacity of CAR-NK cells redirected against CD44v6 to execute cytotoxicity against HNSCC. Anti-CD44v6 CAR-NK cells were generated from healthy donor peripheral blood-derived NK cells using gamma retroviral vectors (gRVs). The NK cell transduction was optimized by exploring virus envelope proteins derived from the baboon endogenous virus envelope (BaEV), feline leukemia virus (FeLV, termed RD114-TR) and gibbon ape leukemia virus (GaLV), respectively. BaEV pseudotyped gRVs induced the highest transduction rate compared to RD114-TR and GaLV envelopes as measured by EGFP and surface CAR expression of transduced NK cells. CAR-NK cells showed a two- to threefold increase in killing efficacy against various HNSCC cell lines compared to unmodified, cytokine-expanded primary NK cells. Anti-CD44v6 CAR-NK cells were effective in eliminating tumor cell lines with high and low CD44v6 expression levels. Overall, the improved cytotoxicity of CAR-NK cells holds promise for a therapeutic option for the treatment of HNSCC. However, further preclinical trials are necessary to test in vivo efficacy and safety, as well to optimize the treatment regimen of anti-CD44v6 CAR-NK cells against solid tumors

    Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing

    Get PDF
    Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these “off-the-shelf” therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NKmediated specific lysis of tumor cells was maintained at stable levels for three days postirradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application

    Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids

    No full text
    Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids

    Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids

    No full text
    Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids

    Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids

    No full text
    Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids

    Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing

    No full text
    Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these “off-the-shelf” therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NKmediated specific lysis of tumor cells was maintained at stable levels for three days postirradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application

    Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing

    No full text
    Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these “off-the-shelf” therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NKmediated specific lysis of tumor cells was maintained at stable levels for three days postirradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application
    corecore