62 research outputs found

    Estudio sobre la realidad de las fundaciones tutelares de la Asociación Española de Fundaciones Tutelares

    Get PDF
    Con la reforma del Código Civil del año 1983 en materia de tutela, se hace posible que determinadas entidades jurídicas puedan ser tutoras de personas que hayan sido incapacitadas judicialmente. Se trata de resolver de esta forma la dificultad de encontrar un tutor adecuado para las personas con discapacidad intelectual, incapaces de gobernarse a sí mismas y que estén en situación de desampara familiar o que teniendo una familia, no fuera esta la idónea para asumir su representación. Se justifica y reconoce la necesidad, como recurso al alcance de las familias de las personas con discapacidad intelectual y de la sociedad en general el Servicio Tutelar, por lo que se ha incorporado en la Cartera de Servicios. Tras más de diez años de andadura de la AEFT, se ha visto realizar un estudio en profundidad para analizar las Fundaciones Tutelares, los tutelados que se representan (patologías asociadas, edades, lugar de residencia...), los voluntarios denominados Delegados Tutelares (perfil, crecimiento, antigüedad...) y por último se hace referencia a los servicios de información y pretutela

    La tutela de personas con discapacidad intelectual en las 17 comunidades autónomas y en las 2 ciudades autonómicas, en relación con las fundaciones tutelares miembros de la Asociación Española de Fundaciones Tutelares

    Get PDF
    Éste es un pequeño repaso de la geografía de las tutelas de personas con discapacidad intelectual. Los datos que se muestran han sido recabados mediante encuesta telefónica. En el gráfico aparecen apartados que se consideran importantes como la sede, año de creación, las personas a las que están dirigidas estas fundaciones, la existencia de juzgados especializados, fiscalías especializadas, equipo psicosocial, relaciones existentes entre las fundaciones de la misma comunidad autónoma. En el caso de la comunidad autónoma de Catalunya, el artículo se detiene en la descripción de diversos aspectos de las Fundaciones, dado que es una comunidad donde se han desarrollado con más fuerza disposiciones y regulaciones específicas y ha intervenido más el gobierno catalán en el mapa tutelar, sin que se haya constituido una Entidad pública de tutela como el resto de Comunidades Autónomas

    PHM19 USING THE EQ-5DTO MONITOR HEALTH-RELATED QUALITY OF LIFE OVERTIME IN THE CATALAN HEALTH INTERVIEW SURVEY

    Get PDF

    Primeros datos arqueométricos sobre la metalurgia del poblado y necrópolis de Calvari del Molar (Priorat, Tarragona)

    Get PDF
    La presencia de materiales fenicios en el curso del río Ebro se ha relacionado con su interés hacia los recursos mineros del nordeste peninsular en general y del área Molar-Bellmunt-Falset en particular, pero hasta la fecha esta propuesta no había sido adecuadamente contrastada. En este artículo presentamos las primeras evidencias de actividad metalúrgica procedentes del poblado de Calvari del Molar (Priorat, Tarragona) (campañas 2002-2003), que consisten en una tobera de tipología desconocida hasta la fecha en Cataluña, un molino empleado para triturar el mineral y una punta de flecha orientalizante que puede interpretarse como una imitación local de modelos foráneos. Damos a conocer también el estudio arqueometalúrgico de otros cuatro bronces procedentes de las excavaciones de S. Vilaseca (1930). La publicación de los resultados arqueológicos y arqueomé- tricos nos sirve para presentar las perspectivas de futuro de nuestra investigación acerca del poblado, de su área minero-metalúrgica y de su relación con los intereses comerciales fenicios. Se presta especial atención a la plata, obtenida a partir de minerales de este metal, plata nativa y galena argentífera, como un subproducto de la explotación de plomo

    Standardized Outcome Measurement for Patients With Coronary Artery Disease: Consensus From the International Consortium for Health Outcomes Measurement (ICHOM)

    Get PDF
    Coronary artery disease (CAD) outcomes consistently improve when they are routinely measured and provided back to physicians and hospitals. The International Consortium for Health Outcomes Measurement (ICHOM) established a Working Group to define a standard set of outcome measures and risk factors of CAD care. Members were drawn from 4 continents and 6 countries. Using a modified Delphi method, the Group defined who should be tracked, what should be measured, and when such measurements should be performed. Thirteen specific outcomes were chosen, including acute complications occurring within 30 days of acute myocardial infarction, coronary artery bypass grafting surgery, or percutaneous coronary intervention; and longitudinal outcomes for up to 5 years for patient‐reported health status (Seattle Angina Questionnaire [SAQ‐7], elements of Rose Dyspnea Score, and Patient Health Questionnaire [PHQ‐2]), cardiovascular hospital admissions, cardiovascular procedures, renal failure, and mortality. Baseline demographic, cardiovascular disease, and comorbidity information is included to improve the interpretability of comparisons

    Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression

    Full text link
    [EN] We report a joint experimental and theoretical study of the low-pressure phase of ¿¿-Ga2S3 under compression. Theoretical ab initio calculations have been compared to X-ray diffraction and Raman scattering measurements under high pressure carried out up to 17.5 and 16.1 GPa, respectively. In addition, we report Raman scattering measurements of ¿¿-Ga2S3 at high temperature that have allowed us to study its anharmonic properties. To understand better the compression of this compound, we have evaluated the topological properties of the electron density, the electron localization function, and the electronic properties as a function of pressure. As a result, we shed light on the role of the Ga¿S bonds, the van der Waals interactions inside the channels of the crystalline structure, and the single and double lone electron pairs of the sulphur atoms in the anisotropic compression of ¿¿-Ga2S3. We found that the structural channels are responsible for the anisotropic properties of ¿¿-Ga2S3 and the A¿(6) phonon, known as the breathing mode and associated with these channels, exhibits the highest anharmonic behaviour. Finally, we report calculations of the electronic band structure of ¿¿-Ga2S3 at different pressures and find a nonlinear pressure behaviour of the direct band gap and a pressure-induced direct-to-indirect band gap crossover that is similar to the behaviour previously reported in other ordered-vacancy compounds, including ß-Ga2Se3. The importance of the single and, more specially, the double lone electron pairs of sulphur in the pressure dependence of the topmost valence band of ¿¿-Ga2S3 is stressed.The authors thank the financial support from the Spanish Research Agency (AEI) under projects MALTA Consolider Team network (RED2018-102612-T) and projects MAT2016-75586-C4-2/3-P, FIS2017-83295-P, PID2019-106383GB-42/43, and PGC2018-097520-A-100, as well as from Generalitat Valenciana under Project PROMETEO/2018/123 (EFIMAT). A. M. and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster and E. L. D. S. acknowledges Marie Sklodowska-Curie Grant No. 785789-COMEX from the European Union's Horizon 2020 research and innovation program. J. A. S. also wants to thank the Ramon y Cajal fellowship (RYC-2015-17482) for financial support. We also thank the ALBA synchrotron light source for funded experiment 2017022088 at the MSPD-BL04 beamline.Gallego-Parra, S.; Vilaplana Cerda, RI.; Gomis, O.; Lora Da Silva, E.; Otero-De-La-Roza, A.; Rodríguez-Hernández, P.; Muñoz, A.... (2021). Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression. Physical Chemistry Chemical Physics. 23(11):6841-6862. https://doi.org/10.1039/d0cp06417cS68416862231

    Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.0c01086.[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA(2)Te(4) compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry.This work has been performed under financial support from the Spanish MINECO under Project MALTA-CONSOLIDER TEAM network (RED2018-102612-T) and Project FIS2017-83295-P, from Generalitat Valenciana under Project PROMETEO/2018/123. This publication is a product of the "Programa de Valoracion y Recursos Conjuntos de I+D+i VLC/CAMPUS and has been financed by the Spanish Ministerio de Educacion, Cultura y Deporte, as part of "Programa Campus de Excelencia Internacional". Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges a "Ramon y Cajal" fellowship (RYC-2015-17482) for financial support, and E.L.D.S. acknowledges Marie Sklodowska-Curie Grant No. 785789-COMEX from the European Union's Horizon 2020 research and innovation program. We also thank ALBA synchrotron and DIAMOND light source for funded experiments.Sans-Tresserras, JÁ.; Vilaplana Cerda, RI.; Da Silva, EL.; Popescu, C.; Cuenca-Gotor, VP.; Andrada-Chacón, A.; Sánchez-Benitez, J.... (2020). Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression. Inorganic Chemistry. 59(14):9900-9918. https://doi.org/10.1021/acs.inorgchem.0c01086S990099185914Mellnik, A. R., Lee, J. S., Richardella, A., Grab, J. L., Mintun, P. J., Fischer, M. H., … Ralph, D. C. (2014). Spin-transfer torque generated by a topological insulator. Nature, 511(7510), 449-451. doi:10.1038/nature13534Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi 2 Te 3. Science, 325(5937), 178-181. doi:10.1126/science.1173034Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234Zhang, T., Jiang, Y., Song, Z., Huang, H., He, Y., Fang, Z., … Fang, C. (2019). Catalogue of topological electronic materials. Nature, 566(7745), 475-479. doi:10.1038/s41586-019-0944-6Vergniory, M. G., Elcoro, L., Felser, C., Regnault, N., Bernevig, B. A., & Wang, Z. (2019). A complete catalogue of high-quality topological materials. Nature, 566(7745), 480-485. doi:10.1038/s41586-019-0954-4Tang, F., Po, H. C., Vishwanath, A., & Wan, X. (2019). Comprehensive search for topological materials using symmetry indicators. Nature, 566(7745), 486-489. doi:10.1038/s41586-019-0937-5Zunger, A. (2019). Beware of plausible predictions of fantasy materials. Nature, 566(7745), 447-449. doi:10.1038/d41586-019-00676-yZhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274Taherinejad, M., Garrity, K. F., & Vanderbilt, D. (2014). Wannier center sheets in topological insulators. Physical Review B, 89(11). doi:10.1103/physrevb.89.115102Niesner, D., Otto, S., Hermann, V., Fauster, T., Menshchikova, T. V., Eremeev, S. V., … Chulkov, E. V. (2014). Bulk and surface electron dynamics in ap-type topological insulatorSnSb2Te4. Physical Review B, 89(8). doi:10.1103/physrevb.89.081404Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012Eremeev, S. V., Koroteev, Y. M., & Chulkov, E. V. (2010). Effect of the atomic composition of the surface on the electron surface states in topological insulators A 2 V B 3 VI. JETP Letters, 91(8), 387-391. doi:10.1134/s0021364010080059Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2011). On the origin of two-dimensional electron gas states at the surface of topological insulators. JETP Letters, 94(2), 106-111. doi:10.1134/s0021364011140104Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2013). Electronic structure of SnSb2Te4 and PbSb2Te4 topological insulators. Applied Surface Science, 267, 1-3. doi:10.1016/j.apsusc.2012.04.048Concas, G., de Pascale, T. M., Garbato, L., Ledda, F., Meloni, F., Rucci, A., & Serra, M. (1992). Electronic and structural properties of the layered SnSb2Te4 semiconductor: Ab initio total-energy and Mössbauer spectroscopy study. Journal of Physics and Chemistry of Solids, 53(6), 791-796. doi:10.1016/0022-3697(92)90191-fEremeev, S. V., Menshchikova, T. V., Silkin, I. V., Vergniory, M. G., Echenique, P. M., & Chulkov, E. V. (2015). Sublattice effect on topological surface states in complex(SnTe)n>1(Bi2Te3)m=1compounds. Physical Review B, 91(24). doi:10.1103/physrevb.91.245145Kuznetsov, A. Y., Pereira, A. S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., … Guignot, N. (2006). Pressure-Induced Chemical Decomposition and Structural Changes of Boric Acid. The Journal of Physical Chemistry B, 110(28), 13858-13865. doi:10.1021/jp061650dShelimova, L. E., Karpinskii, O. G., Konstantinov, P. P., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2004). Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) Systems. Inorganic Materials, 40(5), 451-460. doi:10.1023/b:inma.0000027590.43038.a8Kuropatwa, B. A., Assoud, A., & Kleinke, H. (2013). Effects of Cation Site Substitutions on the Thermoelectric Performance of Layered SnBi2Te4utilizing the Triel Elements Ga, In, and Tl. Zeitschrift für anorganische und allgemeine Chemie, 639(14), 2411-2420. doi:10.1002/zaac.201300325Kuropatwa, B. A., & Kleinke, H. (2012). Thermoelectric Properties of Stoichiometric Compounds in the (SnTe)x(Bi2Te3)ySystem. Zeitschrift für anorganische und allgemeine Chemie, 638(15), 2640-2647. doi:10.1002/zaac.201200284Banik, A., & Biswas, K. (2017). Synthetic Nanosheets of Natural van der Waals Heterostructures. Angewandte Chemie International Edition, 56(46), 14561-14566. doi:10.1002/anie.201708293Shelimova, L. E., Karpinskii, O. G., Svechnikova, T. E., Nikhezina, I. Y., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2008). Effect of cadmium, silver, and tellurium doping on the properties of single crystals of the layered compounds PbBi4Te7 and PbSb2Te4. Inorganic Materials, 44(4), 371-376. doi:10.1134/s0020168508040080Shu, H. W., Jaulmes, S., & Flahaut, J. (1988). Syste`me AsGeTe. Journal of Solid State Chemistry, 74(2), 277-286. doi:10.1016/0022-4596(88)90356-8Adouby, K., Abba Touré, A., Kra, G., Olivier-Fourcade, J., Jumas, J.-C., & Perez Vicente, C. (2000). Phase diagram and local environment of Sn and Te: SnTe Bi and SnTe Bi 2 Te 3 systems. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry, 3(1), 51-58. doi:10.1016/s1387-1609(00)00105-5Oeckler, O., Schneider, M. N., Fahrnbauer, F., & Vaughan, G. (2011). Atom distribution in SnSb2Te4 by resonant X-ray diffraction. Solid State Sciences, 13(5), 1157-1161. doi:10.1016/j.solidstatesciences.2010.12.043Schäfer, T., Konze, P. M., Huyeng, J. D., Deringer, V. L., Lesieur, T., Müller, P., … Wuttig, M. (2017). Chemical Tuning of Carrier Type and Concentration in a Homologous Series of Crystalline Chalcogenides. Chemistry of Materials, 29(16), 6749-6757. doi:10.1021/acs.chemmater.7b01595Gallus, J. Lattice Dynamics in the SnSb2Te4 Phase Change Material. Diplomarbeit; Rheinisch-Westfälischen Technischen Hochschule Aachen: 2011.Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280Yu, Y., Cagnoni, M., Cojocaru‐Mirédin, O., & Wuttig, M. (2019). Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 30(8), 1904862. doi:10.1002/adfm.201904862Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V 2 VI 3 or Pn 2 Ch 3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316Kooi, B. J., & Wuttig, M. (2020). Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. Advanced Materials, 32(21), 1908302. doi:10.1002/adma.201908302Hsieh, W.-P., Zalden, P., Wuttig, M., Lindenberg, A. M., & Mao, W. L. (2013). High-pressure Raman spectroscopy of phase change materials. Applied Physics Letters, 103(19), 191908. doi:10.1063/1.4829358Vilaplana, R., Sans, J. A., Manjón, F. J., Andrada-Chacón, A., Sánchez-Benítez, J., Popescu, C., … Oeckler, O. (2016). Structural and electrical study of the topological insulator SnBi2Te4 at high pressure. Journal of Alloys and Compounds, 685, 962-970. doi:10.1016/j.jallcom.2016.06.170Song, P., Matsumoto, R., Hou, Z., Adachi, S., Hara, H., Saito, Y., … Takano, Y. (2020). Pressure-induced superconductivity in SnSb2Te4. Journal of Physics: Condensed Matter, 32(23), 235901. doi:10.1088/1361-648x/ab76e2Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Larson, A. C.; Von Dreele, R. B.General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748; 1994.Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640Debernardi, A., Ulrich, C., Cardona, M., & Syassen, K. (2001). Pressure Dependence of Raman Linewidth in Semiconductors. physica status solidi (b), 223(1), 213-223. doi:10.1002/1521-3951(200101)223:13.0.co;2-iGarcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Parlinski, K. see: http://www.computingformaterials.com/index.html. March 2020.Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21(8), 084204. doi:10.1088/0953-8984/21/8/084204Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899-908. doi:10.1002/jcc.20575Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360. doi:10.1016/j.commatsci.2005.04.010Yu, M., & Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111. doi:10.1063/1.3553716http://theory.cm.utexas.edu/henkelman/code/bader/. March 2019.Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498-6506. doi:10.1021/ja100936wContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. Journal of Chemical Theory and Computation, 7(3), 625-632. doi:10.1021/ct100641aAngel, R. J., Alvaro, M., & Gonzalez-Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie - Crystalline Materials, 229(5), 405-419. doi:10.1515/zkri-2013-1711Zhou, D., Li, Q., Ma, Y., Cui, Q., & Chen, C. (2013). Unraveling Convoluted Structural Transitions in SnTe at High Pressure. The Journal of Physical Chemistry C, 117(10), 5352-5357. doi:10.1021/jp4008762Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9Wang, B.-T., Souvatzis, P., Eriksson, O., & Zhang, P. (2015). Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations. The Journal of Chemical Physics, 142(17), 174702. doi:10.1063/1.4919683Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826jCuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049Robinson, K., Gibbs, G. V., & Ribbe, P. H. (1971). Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. Science, 172(3983), 567-570. doi:10.1126/science.172.3983.567Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560Walsh, A., & Watson, G. W. (2005). Influence of the Anion on Lone Pair Formation in Sn(II) Monochalcogenides:  A DFT Study. The Journal of Physical Chemistry B, 109(40), 18868-18875. doi:10.1021/jp051822rSkowron, A., Boswell, F. W., Corbett, J. M., & Taylor, N. J. (1994). Structure Determination of PbSb2Se4. Journal of Solid State Chemistry, 112(2), 251-254. doi:10.1006/jssc.1994.1300Smith, P. P. K., & Parise, J. B. (1985). Structure determination of SnSb2S4 and SnSb2Se4 by high-resolution electron microscopy. Acta Crystallographica Section B Structural Science, 41(2), 84-87. doi:10.1107/s0108768185001665Iitaka, Y., & Nowacki, W. (1962). A redetermination of the crystal structure of galenobismutite, PbBi2S4. Acta Crystallographica, 15(7), 691-698. doi:10.1107/s0365110x62001887Gaspard, J.-P., & Ceolin, R. (1992). Hume-Rothery rule in V–VI compounds. Solid State Communications, 84(8), 839-842. doi:10.1016/0038-1098(92)90102-fGaspard, J.-P., Pellegatti, A., Marinelli, F., & Bichara, C. (1998). Peierls instabilities in covalent structures I. Electronic structure, cohesion and theZ= 8 –Nrule. Philosophical Magazine B, 77(3), 727-744. doi:10.1080/13642819808214831Seo, D.-K., & Hoffmann, R. (1999). What Determines the Structures of the Group 15 Elements? Journal of Solid State Chemistry, 147(1), 26-37. doi:10.1006/jssc.1999.8140Zhang, H., Liu, C.-X., & Zhang, S.-C. (2013). Spin-Orbital Texture in Topological Insulators. Physical Review Letters, 111(6). doi:10.1103/physrevlett.111.066801Tamtögl, A., Kraus, P., Mayrhofer-Reinhartshuber, M., Benedek, G., Bernasconi, M., Dragoni, D., … Ernst, W. E. (2019). Statics and dynamics of multivalley charge density waves in Sb(111). npj Quantum Materials, 4(1). doi:10.1038/s41535-019-0168-xLi, Y.; Parsons, C.; Ramakrishna, S.; Dwivedi, A.; Schofield, M.; Reyes, A.; Guptasarma, P. Charge Density Wave Order in the Topological Insulator Bi2Se3. arXiv: 2002.12546.Boulfelfel, S. E., Seifert, G., Grin, Y., & Leoni, S. (2012). Squeezing lone pairs: TheA17 toA7 pressure-induced phase transition in black phosphorus. Physical Review B, 85(1). doi:10.1103/physrevb.85.014110Zhang, X., Stevanović, V., d’ Avezac, M., Lany, S., & Zunger, A. (2012). Prediction ofA2BX4metal-chalcogenide compounds via first-principles thermodynamics. Physical Review B, 86(1). doi:10.1103/physrevb.86.014109Zunger, A. (1980). Systematization of the stable crystal structure of allAB-type binary compounds: A pseudopotential orbital-radii approach. Physical Review B, 22(12), 5839-5872. doi:10.1103/physrevb.22.5839Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., … Uruga, T. (2006). Pressure-Induced Site-Selective Disordering ofGe2Sb2Te5: A New Insight into Phase-Change Optical Recording. Physical Review Letters, 97(3). doi:10.1103/physrevlett.97.035701Arora, A. . (2000). Pressure-induced amorphization versus decomposition. Solid State Communications, 115(12), 665-668. doi:10.1016/s0038-1098(00)00253-2Bassett, W. A., & Li-Chung Ming. (1972). Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250kbar and temperatures up to 3000 °C. Physics of the Earth and Planetary Interiors, 6(1-3), 154-160. doi:10.1016/0031-9201(72)90048-9Fei, Y., & Mao, H.-K. (1993). Static compression of Mg(OH)2to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. Journal of Geophysical Research: Solid Earth, 98(B7), 11875-11884. doi:10.1029/93jb00701Kuznetsov, A. Y., Pereira, A. S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., … Guignot, N. (2006). Pressure-Induced Chemical Decomposition and Structural Changes of Boric Acid. The Journal of Physical Chemistry B, 110(28), 13858-13865. doi:10.1021/jp061650dCatafesta, J., Rovani, P. R., Perottoni, C. A., & Pereira, A. S. (2015). Pressure-enhanced decomposition of Ag3[Co(CN)6]. Journal of Physics and

    Pressure-induced phase transition and band-gap collapse in the wide-band-gap semiconductor InTaO4

    Full text link
    A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond-anvil cell with ab initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure that shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic band-gap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on infrared-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.This paper was partially supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under Grants No. MAT2013-46649-C04-01/02/03 and No. MAT2015-71070-REDC (MALTA Consolider). The XRD experiments were performed at the MSPD-BL04 beamline at ALBA Synchrotron with the collaboration of ALBA staff. We thank S. Agouram from SC-SIE at Universitat de Valencia for technical support with the transmission electron microscope measurements.Errandonea, D.; Popescu, C.; Garg, A.; Botella, P.; Martinez García, D.; Pellicer Porres, J.; Rodríguez Hernández, P.... (2016). Pressure-induced phase transition and band-gap collapse in the wide-band-gap semiconductor InTaO4. Physical review B: Condensed matter and materials physics. 93(3):035204-1-035204-12. https://doi.org/10.1103/PhysRevB.93.035204S035204-1035204-12933Niermann, D., Grams, C. P., Schalenbach, M., Becker, P., Bohatý, L., Stein, J., … Hemberger, J. (2014). Domain dynamics in the multiferroic phase ofMnWO4. Physical Review B, 89(13). doi:10.1103/physrevb.89.134412Baum, M., Leist, J., Finger, T., Schmalzl, K., Hiess, A., Regnault, L. P., … Braden, M. (2014). Kinetics of the multiferroic switching inMnWO4. Physical Review B, 89(14). doi:10.1103/physrevb.89.144406Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202Ruiz-Fuertes, J., Segura, A., Rodríguez, F., Errandonea, D., & Sanz-Ortiz, M. N. (2012). Anomalous High-Pressure Jahn-Teller Behavior inCuWO4. Physical Review Letters, 108(16). doi:10.1103/physrevlett.108.166402Lacomba-Perales, R., Errandonea, D., Martinez-Garcia, D., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Polian, A. (2009). Phase transitions in wolframite-typeCdWO4at high pressure studied by Raman spectroscopy and density-functional theory. Physical Review B, 79(9). doi:10.1103/physrevb.79.094105Goel, P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2015). Inelastic neutron scattering studies of phonon spectra, and simulations of pressure-induced amorphization in tungstatesAWO4(A=Ba,Sr,Ca, andPb). Physical Review B, 91(9). doi:10.1103/physrevb.91.094304Errandonea, D. (2015). Exploring the properties of MTO4compounds using high-pressure powder x-ray diffraction. Crystal Research and Technology, 50(9-10), 729-736. doi:10.1002/crat.201500010Errandonea, D., Gracia, L., Lacomba-Perales, R., Polian, A., & Chervin, J. C. (2013). Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 113(12), 123510. doi:10.1063/1.4798374Coelho, M. N., Freire, P. T. C., Maczka, M., Luz-Lima, C., Saraiva, G. D., Paraguassu, W., … Pizani, P. S. (2013). High-pressure Raman scattering of MgMoO4. Vibrational Spectroscopy, 68, 34-39. doi:10.1016/j.vibspec.2013.05.007Errandonea, D., Santamaria-Perez, D., Grover, V., Achary, S. N., & Tyagi, A. K. (2010). High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4. Journal of Applied Physics, 108(7), 073518. doi:10.1063/1.3493048Errandonea, D., Pellicer-Porres, J., Manjón, F. J., Segura, A., Ferrer-Roca, C., Kumar, R. S., … Aquilanti, G. (2005). High-pressure structural study of the scheelite tungstatesCaWO4andSrWO4. Physical Review B, 72(17). doi:10.1103/physrevb.72.174106Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Zhang, Y., Holzwarth, N. A. W., & Williams, R. T. (1998). Electronic band structures of the scheelite materialsCaMoO4,CaWO4,PbMoO4,andPbWO4. Physical Review B, 57(20), 12738-12750. doi:10.1103/physrevb.57.12738Annenkov, A. ., Korzhik, M. ., & Lecoq, P. (2002). Lead tungstate scintillation material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 490(1-2), 30-50. doi:10.1016/s0168-9002(02)00916-6Nikl, M., Bohacek, P., Mihokova, E., Solovieva, N., Vedda, A., Martini, M., … Ishii, M. (2002). Enhanced efficiency of PbWO4:Mo,Nb scintillator. Journal of Applied Physics, 91(8), 5041-5044. doi:10.1063/1.1462420Brenier, A., Jia, G., & Tu, C. (2004). Raman lasers at 1.171 and 1.517 μm with self-frequency conversion in SrWO4:Nd3+ crystal. Journal of Physics: Condensed Matter, 16(49), 9103-9108. doi:10.1088/0953-8984/16/49/025Ablett, J. M., Rueff, J.-P., Shieh, S. R., Kao, C. C., & Wang, S. (2015). Possible evidence for high-pressure induced charge transfer in thallium rhenium oxide at room temperature. Physical Review B, 92(1). doi:10.1103/physrevb.92.014113Feng, J., Shian, S., Xiao, B., & Clarke, D. R. (2014). First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Physical Review B, 90(9). doi:10.1103/physrevb.90.094102Malingowski, A. C., Stephens, P. W., Huq, A., Huang, Q., Khalid, S., & Khalifah, P. G. (2012). Substitutional Mechanism of Ni into the Wide-Band-Gap Semiconductor InTaO4and Its Implications for Water Splitting Activity in the Wolframite Structure Type. Inorganic Chemistry, 51(11), 6096-6103. doi:10.1021/ic202715cZou, Z., Ye, J., Sayama, K., & Arakawa, H. (2001). Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 414(6864), 625-627. doi:10.1038/414625aLiebertz, J. (1972). Gitterkonstanten von InNbO4 und InTaO4. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 3100-3100. doi:10.1107/s0567740872007502Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848Keeling, R. O. (1957). The structure of NiWO4. Acta Crystallographica, 10(3), 209-213. doi:10.1107/s0365110x57000651Li, G.-L., & Yin, Z. (2011). Theoretical insight into the electronic, optical and photocatalytic properties of InMO4(M = V, Nb, Ta) photocatalysts. Phys. Chem. Chem. Phys., 13(7), 2824-2833. doi:10.1039/b921143hYe, J., Zou, Z., Arakawa, H., Oshikiri, M., Shimoda, M., Matsushita, A., & Shishido, T. (2002). Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+). Journal of Photochemistry and Photobiology A: Chemistry, 148(1-3), 79-83. doi:10.1016/s1010-6030(02)00074-6Zou, Z., Ye, J., & Arakawa, H. (2000). Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters, 332(3-4), 271-277. doi:10.1016/s0009-2614(00)01265-3Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Errandonea, D., Achary, S. N., Pellicer-Porres, J., & Tyagi, A. K. (2013). Pressure-Induced Transformations in PrVO4 and SmVO4 and Isolation of High-Pressure Metastable Phases. Inorganic Chemistry, 52(9), 5464-5469. doi:10.1021/ic400376gErrandonea, D. (2010). The melting curve of ten metals up to 12 GPa and 1600 K. Journal of Applied Physics, 108(3), 033517. doi:10.1063/1.3468149Lacomba-Perales, R., Errandonea, D., Segura, A., Ruiz-Fuertes, J., Rodríguez-Hernández, P., Radescu, S., … Muñoz, A. (2011). A combined high-pressure experimental and theoretical study of the electronic band-structure of scheelite-type AWO4 (A = Ca, Sr, Ba, Pb) compounds. Journal of Applied Physics, 110(4), 043703. doi:10.1063/1.3622322Panchal, V., Errandonea, D., Segura, A., Rodríguez-Hernandez, P., Muñoz, A., Lopez-Moreno, S., & Bettinelli, M. (2011). The electronic structure of zircon-type orthovanadates: Effects of high-pressure and cation substitution. Journal of Applied Physics, 110(4), 043723. doi:10.1063/1.3626060Errandonea, D., Martínez-García, D., Lacomba-Perales, R., Ruiz-Fuertes, J., & Segura, A. (2006). Effects of high pressure on the optical absorption spectrum of scintillating PbWO4 crystals. Applied Physics Letters, 89(9), 091913. doi:10.1063/1.2345228Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121Harneit, O., & Müller-Buschbaum, H. (1993). InTaO4 und GaTaO4 mit geordneter und ungeordneter Metallverteilung. Journal of Alloys and Compounds, 194(1), 101-103. doi:10.1016/0925-8388(93)90652-4Errandonea, D., Gomis, O., García-Domene, B., Pellicer-Porres, J., Katari, V., Achary, S. N., … Popescu, C. (2013). New Polymorph of InVO4: A High-Pressure Structure with Six-Coordinated Vanadium. Inorganic Chemistry, 52(21), 12790-12798. doi:10.1021/ic402043xBirch, F. (1952). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57(2), 227-286. doi:10.1029/jz057i002p00227Angel, R. J., Alvaro, M., & Gonzalez-Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2013-1711Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., … Sapiña, F. (2010). High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides. Physical Review B, 82(17). doi:10.1103/physrevb.82.174105Ruiz-Fuertes, J., Errandonea, D., Gomis, O., Friedrich, A., & Manjón, F. J. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics, 115(4), 043510. doi:10.1063/1.4863236Errandonea, D., Manjón, F. J., Muñoz, A., Rodríguez-Hernández, P., Panchal, V., Achary, S. N., & Tyagi, A. K. (2013). High-pressure polymorphs of TbVO4: A Raman and ab initio study. Journal of Alloys and Compounds, 577, 327-335. doi:10.1016/j.jallcom.2013.06.008Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Proctor, J. E., Sapiña, F., & Bettinelli, M. (2015). Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorganic Chemistry, 54(15), 7524-7535. doi:10.1021/acs.inorgchem.5b01135Itoh, M., Yokota, H., Horimoto, M., Fujita, M., & Usuki, Y. (2002). Urbach Rule in PbWO4. physica status solidi (b), 231(2), 595-600. doi:10.1002/1521-3951(200206)231:23.0.co;2-wTauc, J. (1968). Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), 37-46. doi:10.1016/0025-5408(68)90023-8Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411Errandonea, D., Pellicer-Porres, J., Pujol, M. C., Carvajal, J. J., & Aguiló, M. (2015). Room-temperature vibrational properties of potassium gadolinium double tungstate under compression up to 32GPa. Journal of Alloys and Compounds, 638, 14-20. doi:10.1016/j.jallcom.2015.03.02
    corecore