60 research outputs found

    Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    Get PDF
    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability

    Metaphenotypes associated with recurrent genomic lineages of Campylobacter jejuni responsible for human infections in Luxembourg

    Get PDF
    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Although considered fragile, this microaerophilic bacterium is able to survive in various challenging environments, which subsequently constitutes multiple sources of transmission for human infection. To test the assumption of acquiring specific features for adaption and survivals we established a workflow of phenotypic tests related to the survival and the persistence of recurrent and sporadic strains. A representative collection of 83 strains isolated over 13 years from human, mammal, poultry, and environmental sources in Luxembourg, representing different spreading patterns (endemic, epidemic, and sporadic), was screened for survival to oxidative stresses, for acclimating to aerobic conditions (AC), and for persistence on abiotic surfaces. Using the cgMLST Oxford typing scheme for WGS data, the collection was classified into genomic lineages corresponding to host-generalist strains (lineages A and D, CC ST-21), host-specific strains (lineages B, CC ST-257 and lineage C, CC ST-464) and sporadic strains. We established that when a strain survives concentrations beyond 0.25 mM superoxide stress, it is six times more likely to survive hyperoxide stress and that a highly adherent strain is 14 times more likely to develop a biofilm. Surprisingly, more than half of the strains could acclimate to AC but this capacity does not explain the difference between recurrent genomic lineages and sporadic strains and the survival to oxidative stresses, while recurrent strains have a significantly higher adhesion/biofilm formation capacity than sporadic ones. From this work, the genomic lineages with more stable genomes could be characterized by a specific combination of phenotypes, called metaphenotypes. From the functional genomic analyses, the presence of a potentially functional T6SS in the strains of lineage D might explain the propensity of these strains to be strong biofilm producers. Our findings support the hypothesis that phenotypical abilities contribute to the spatio-temporal adaptation and survival of stable genomic lineages. It suggests a selection of better-adapted and persistent strains in challenging stress environments, which could explain the prevalence of these lineages in human infections

    The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    Get PDF
    peer-reviewedIn combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products

    Investigating Major Recurring Campylobacter jejuni Lineages in Luxembourg Using Four Core or Whole Genome Sequencing Typing Schemes

    Get PDF
    Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our integrated surveillance using a genotyping strategy based on an extended MLST scheme including gyrA and porA markers, an unexpected endemic pattern was discovered in the temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages occurrence by implementing whole genome sequencing (WGS) associated with comprehensive and internationally validated schemes. This pilot study assessed four WGS-based typing schemes to classify a panel of 108 strains previously identified as recurrent or sporadic profiles using this in-house typing system. The strain collection included four common lineages in human infection (N = 67) initially identified from recurrent combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N = 19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains belonging to sporadic profiles completed the tested panel. All the strains were processed by WGS by using Illumina technologies and by applying stringent criteria for filtering sequencing data; we ensure robustness in our genomic comparison. Four typing schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of 637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high concordance between the typing schemes was determined by comparing the calculated adjusted Wallace coefficients. After quality control and analyses with these four typing schemes, 60 strains were confirmed as members of the four recurrent lineages regardless of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that, regardless of the typing scheme used, epidemic or endemic signals were detected as reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7), respectively. These findings support the clonal expansion of stable genomes in Campylobacter population exhibiting a multi-host profile and accounting for the majority of clinical strains isolated over a decade. Such recurring genotypes suggest persistence in reservoirs, sources or environment, emphasising the need to investigate their survival strategy in greater depth

    Critical review on biofilm methods

    Get PDF
    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.The authors would like to acknowledge the support from the EU COST Action BacFoodNet FA1202

    La bactérie dans tous ses états : immobilis in mobile

    No full text

    Bacterial contaminants of poultry mMeat: sources, species, and dynamics

    No full text
    With the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established. View Full-Tex

    Bacterial contaminants of poultry mMeat: sources, species, and dynamics

    No full text
    International audienceWith the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established. View Full-Tex

    Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis

    No full text
    International audiencePopulation dynamics was studied in a 52-l biotrickling filter (BTF) operated for 182 days and used to clean air contaminated with styrene vapors. In the BTF, biomass grew either as free-floating (planktonic) or attached (sessile) microorganisms. PCR-amplified 16S rDNA fragments from planktonic and sessile cells within the bioreactor were analyzed using denaturing gradient gel electrophoresis (DGGE). The results indicated that the complexity of biofilm community was always more pronounced than the complexity of the planktonic cell community. Notably, Rhodococcus erythropolis was identified, based on DNA sequence analysis, as one of the biofilm-specific strains. It was also shown that the inoculum, even when enriched with styrene-degrading bacteria, was not adapted to the growth conditions imposed by the BTF. After a 35-day microbial acclimation period, the DGGE analysis also showed less variation in the banding pattern representing the microbial complexity of the biofilm. In addition, the phylogenic fingerprinting method used demonstrated similar banding profiles in the biofilm along the filter bed
    • 

    corecore