125 research outputs found

    In silico ischaemia-induced reentry at the Purkinjeventricle interface

    Full text link
    This computational modelling work illustrates the influence of hyperkalaemia and electrical uncoupling induced by defined ischaemia on action potential (AP) propagation and the incidence of reentry at the Purkinjeventricle interface in mammalian hearts. Unidimensional and bidimensional models of the Purkinjeventricle subsystem, including ischaemic conditions (defined as phase 1B) in the ventricle and an ischaemic border zone, were developed by altering several important electrophysiological parameters of the LuoRudy AP model of the ventricular myocyte. Purkinje electrical activity was modelled using the equations of DiFrancesco and Noble. Our study suggests that an extracellular potassium concentration [K](o) 14 mM and a slight decrease in intercellular coupling induced by ischaemia in ventricle can cause conduction block from Purkinje to ventricle. Under these conditions, propagation from ventricle to Purkinje is possible. Thus, unidirectional block (UDB) and reentry can result. When conditions of UDB are met, retrograde propagation with a long delay (320 ms) may re-excite Purkinje cells, and give rise to a reentrant pathway. This induced reentry may be the origin of arrhythmias observed in phase 1B ischaemia. In a defined setting of ischaemia (phase 1B), a small amount of uncoupling between ventricular cells, as well as between Purkinje and ventricular tissue, may induce UDBs and reentry. Hyperkalaemia is also confirmed to be an important factor in the genesis of reentrant rhythms, since it regulates the range of coupling in which UDBs may be induced.This work was supported: (i) by the European Commission preDiCT grant (DG-INFSO-224381), (ii) by the 'VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica' from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds - ERDF - FEDER), and (iii) by the Programa de Apoyo a la Investigacioon y Desarrollo (PAID-06-11-2002) de la Universidad Politecnica de Valencia, Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana, and (iv) Direccion General de Politica Cientifica de la Generalitat Valenciana (GV/2013/119).Esteban Ramírez, J.; Saiz Rodríguez, FJ.; Romero Pérez, L.; Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA. (2014). In silico ischaemia-induced reentry at the Purkinjeventricle interface. EP-Europace. 16(3):444-451. https://doi.org/10.1093/europace/eut386S44445116

    Surgical treatment of aortobronchial fistula after thoracic endograft failure

    Get PDF
    Endovascular stent grafting has been recently considered as a less invasive alternative to either medical therapy or open surgical treatment for many patients with descending thoracic aortic disease. Late complications are rarely described in literature. Herein, we described the occurrence of an aorto-bronchial fistula and a retro-A dissection in a 73-year-old man after stent-grafting for a penetrating atherosclerotic ulcer (PAU) of the descending thoracic aorta and the successful surgical technique adopted in order to remove the stent-graft

    Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure

    Full text link
    Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus,we aimed to examinewhether decreased expression of the rapid delayed rectifier potassiumcurrent, IKr, contributes to repolarization abnormalities in human HF. Tomap functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (ΔAPD80) and found that ΔAPD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p = 0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongationwas greater in normal conditions than in failing conditions, provided that the cellularmodel of HF included a significant downregulation of IKr. In humanHF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.We thank the Translational Cardiovascular Biobank & Repository (TCBR) at Washington University for provision of donor/patient records. The TCBR is supported by the NIH/CTSA (UL1 TR000448), Children's Discovery Institute, and Richard J. Wilkinson Trust. We also thank the laboratory of Dr. Sakiyama-Elbert for the use of the StepOnePlus equipment We appreciate the critical feedback on the manuscript by Dr. Jeanne Nerbonne. This work has been supported by the National Heart, Lung & Blood Institute (NHLBI, R01 HL114395). K. Holzem has been supported by the American Heart Association (12PRE12050315) and the NHLBI (F30 HL114310).Holzem, KM.; Gómez García, JF.; Glukhov, AV.; Madden, EJ.; Koppel, AC.; Ewald, GA.; Trénor Gomis, BA.... (2016). Reduced response to IKr blockade and altered hERG1a/1b stoichiometryin human heart failure. Journal of Molecular and Cellular Cardiology. 96:82-92. https://doi.org/10.1016/j.yjmcc.2015.06.008S82929

    Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction

    Full text link
    [EN] Ischaemic heart disease is considered as the single most frequent cause of death, provoking more than 7 000 000 deaths every year worldwide. A high percentage of patients experience sudden cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial ischaemia and infarction. These diseases are difficult to study using solely experimental means due to their complex dynamics and unstable nature. In the past decades, integrative computational simulation techniques have become a powerful tool to complement experimental and clinical research when trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is to briefly review some of the multiscale computational models of myocardial ischaemia and infarction developed in the past 20 years, ranging from the cellular level to whole-heart simulations.This work was partially supported by the 'VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica' from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds-ERDF-FEDER), and by the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119).Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA.; Romero Pérez, L. (2014). Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction. EP-Europace. 16(3):405-415. https://doi.org/10.1093/europace/eut405S40541516

    Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivated watermelon [<it>Citrullus lanatus </it>(Thunb.) Matsum. & Nakai var. <it>lanatus</it>] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues.</p> <p>Results</p> <p>We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. <it>De novo </it>assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development.</p> <p>Conclusion</p> <p>We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.</p

    Neoplastic transformation of rat liver epithelial cells is enhanced by non-transferrin-bound iron

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron overload is associated with liver toxicity, cirrhosis, and hepatocellular carcinoma in humans. While most iron circulates in blood as transferrin-bound iron, non-transferrin-bound iron (NTBI) also becomes elevated and contributes to toxicity in the setting of iron overload. The mechanism for iron-related carcinogenesis is not well understood, in part due to a shortage of suitable experimental models. The primary aim of this study was to investigate NTBI-related hepatic carcinogenesis using T51B rat liver epithelial cells, a non-neoplastic cell line previously developed for carcinogenicity and tumor promotion studies.</p> <p>Methods</p> <p>T51B cells were loaded with iron by repeated addition of ferric ammonium citrate (FAC) to the culture medium. Iron internalization was documented by chemical assay, ferritin induction, and loss of calcein fluorescence. Proliferative effects were determined by cell count, toxicity was determined by MTT assay, and neoplastic transformation was assessed by measuring colony formation in soft agar. Cyclin levels were measured by western blot.</p> <p>Results</p> <p>T51B cells readily internalized NTBI given as FAC. Within 1 week of treatment at 200 μM, there were significant but well-tolerated toxic effects including a decrease in cell proliferation (30% decrease, p < 0.01). FAC alone induced little or no colony formation in soft agar. In contrast, FAC addition to cells previously initiated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in a concentration dependent increase in colony formation. This was first detected at 12 weeks of FAC treatment and increased at longer times. At 16 weeks, colony formation increased more than 10 fold in cells treated with 200 μM FAC (p < 0.001). The iron chelator desferoxamine reduced both iron uptake and colony formation. Cells cultured with 200 μM FAC showed decreased cyclin D1, decreased cyclin A, and increased cyclin B1.</p> <p>Conclusion</p> <p>These results establish NTBI as a tumor promoter in T51B rat liver epithelial cells. Changes in cyclin proteins suggest cell cycle disregulation contributes to tumor promotion by NTBI in this liver cell model.</p
    corecore