120 research outputs found

    Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping

    Full text link
    A combination of analytical approaches and quantum Monte Carlo simulations is used to study both magnetic and pairing correlations for a version of the Hubbard model that includes second-neighbor hopping t=0.35tt^{\prime }=-0.35t as a model for high-temperature superconductors. Magnetic properties are analyzed using the Two-Particle Self-Consistent approach. The maximum in magnetic susceptibility as a function of doping appears both at finite % t^{\prime } and at t=0t^{\prime }=0 but for two totally different physical reasons. When t=0t^{\prime }=0, it is induced by antiferromagnetic correlations while at t=0.35tt^{\prime }=-0.35t it is a band structure effect amplified by interactions. Finally, pairing fluctuations are compared with % T -matrix results to disentangle the effects of van Hove singularity and of nesting on superconducting correlations. The addition of antiferromagnetic fluctuations increases slightly the dd-wave superconducting correlations despite the presence of a van Hove singularity which tends to decrease them in the repulsive model. Some aspects of the phase diagram and some subtleties of finite-size scaling in Monte Carlo simulations, such as inverted finite-size dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure

    Field Theory And Second Renormalization Group For Multifractals In Percolation

    Full text link
    The field-theory for multifractals in percolation is reformulated in such a way that multifractal exponents clearly appear as eigenvalues of a second renormalization group. The first renormalization group describes geometrical properties of percolation clusters, while the second-one describes electrical properties, including noise cumulants. In this context, multifractal exponents are associated with symmetry-breaking fields in replica space. This provides an explanation for their observability. It is suggested that multifractal exponents are ''dominant'' instead of ''relevant'' since there exists an arbitrary scale factor which can change their sign from positive to negative without changing the Physics of the problem.Comment: RevTex, 10 page

    Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory (Review Article)

    No full text
    This is a short review of the theoretical work on the two-dimensional Hubbard model performed in Sherbrooke in the last few years. It is written on the occasion of the twentieth anniversary of the discovery of high-temperature superconductivity. We discuss several approaches, how they were benchmarked and how they agree sufficiently with each other that we can trust that the results are accurate solutions of the Hubbard model. Then comparisons are made with experiment. We show that the Hubbard model does exhibit d-wave superconductivity and antiferromagnetism essentially where they are observed for both hole and electron-doped cuprates. We also show that the pseudogap phenomenon comes out of these calculations. In the case of electron-doped high temperature superconductors, comparisons with angle-resolved photoemission experiments are nearly quantitative. The value of the pseudogap temperature observed for these compounds in recent photoemission experiments has been predicted by theory before it was observed experimentally. Additional experimental confirmation would be useful. The theoretical methods that are surveyed include mostly the two-particle self-consistent approach, variational cluster perturbation theory (or variational cluster approximation), and cellular dynamical meanfield theory

    Higher Order Effects in the Dielectric Constant of Percolative Metal-Insulator Systems above the Critical Point

    Full text link
    The dielectric constant of a conductor-insulator mixture shows a pronounced maximum above the critical volume concentration. Further experimental evidence is presented as well as a theoretical consideration based on a phenomenological equation. Explicit expressions are given for the position of the maximum in terms of scaling parameters and the (complex) conductances of the conductor and insulator. In order to fit some of the data, a volume fraction dependent expression for the conductivity of the more highly conductive component is introduced.Comment: 4 pages, Latex, 4 postscript (*.epsi) files submitted to Phys Rev.

    Shear-induced quench of long-range correlations in a liquid mixture

    Full text link
    A static correlation function of concentration fluctuations in a (dilute) binary liquid mixture subjected to both a concentration gradient and uniform shear flow is investigated within the framework of fluctuating hydrodynamics. It is shown that a well-known c2/k4|\nabla c|^2/k^4 long-range correlation at large wave numbers kk crosses over to a weaker divergent one for wave numbers satisfying k<(γ˙/D)1/2k<(\dot{\gamma}/D)^{1/2}, while an asymptotic shear-controlled power-law dependence is confirmed at much smaller wave numbers given by k(γ˙/ν)1/2k\ll (\dot{\gamma}/\nu)^{1/2}, where cc, γ˙\dot{\gamma}, DD and ν\nu are the mass concentration, the rate of the shear, the mass diffusivity and the kinematic viscosity of the mixture, respectively. The result will provide for the first time the possibility to observe the shear-induced suppression of a long-range correlation experimentally by using, for example, a low-angle light scattering technique.Comment: 8pages, 2figure

    Long-Ranged Correlations in Sheared Fluids

    Full text link
    The presence of long-ranged correlations in a fluid undergoing uniform shear flow is investigated. An exact relation between the density autocorrelation function and the density-mometum correlation function implies that the former must decay more rapidly than 1/r1/r, in contrast to predictions of simple mode coupling theory. Analytic and numerical evaluation of a non-perturbative mode-coupling model confirms a crossover from 1/r1/r behavior at ''small'' rr to a stronger asymptotic power-law decay. The characteristic length scale is λ0/a\ell \approx \sqrt{\lambda_{0}/a} where % \lambda_{0} is the sound damping constant and aa is the shear rate.Comment: 15 pages, 2 figures. Submitted to PR

    The Negative Impacts of COVID-19 Containment Measures on South African Families - Overview and Recommendations

    Get PDF
    The World Health Organization (WHO) reported various pneumonia cases (‘Coronavirus Disease 2019’ [COVID-19]) on 31 December 2019 in Wuhan City, China, which has spread to many countries, including South Africa. In response to this, the President of South Africa declared a state of national disaster on 15th March 2020, followed by introducing various COVID-19 containment measures to minimize the spread of the virus. This paper examines the negative impacts that COVID-19 containment measures may have had on the family as a unit of society and furthermore provides recommendations to mitigate the impacts of these measures. It can be concluded that COVID-19 containment measures, specifically the lockdown restrictions, would yield both short-term and long-term impacts on proper family functioning. Several families in South Africa have been impacted financially due to the closure of business which led to the temporary/ permanent unemployment of some breadwinners in the families. This also has had a cascading impact on the food security of families and their ability to afford other basic necessities. Distress as a result of financial challenges or failure to provide for the family alongside spending much time locked down together as a family has also led to violence in the family. This was further exacerbated by the fact that the victims were stuck with the abusers and some could not report or find help due to the restricted movements. Furthermore, since most institutions predominantly moved learning online, results indicated that the lockdown restrictions affected the ability of some individuals especially those from poor families to access formal education during the period due to the lack of digital devices and internet facilities. In order to mitigate the impacts of the COVID-19 containment measures on the family, there is a need for collaborative efforts at intrapersonal, interpersonal, institutional, community and policy levels using the ecological framework
    corecore