258 research outputs found

    Thermal Detection Thresholds of Aδ- and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin

    Get PDF
    Brief high-power laser pulses applied onto the hairy skin of the distal end of a limb generate a double sensation related to the activation of Aδ- and C-fibres, referred to as first and second pain. However, neurophysiological and behavioural responses related to the activation of C-fibres can be studied reliably only if the concomitant activation of Aδ-fibres is avoided. Here, using a novel CO2 laser stimulator able to deliver constant-temperature heat pulses through a feedback regulation of laser power by an online measurement of skin temperature at target site, combined with an adaptive staircase algorithm using reaction-time to distinguish between responses triggered by Aδ- and C-fibre input, we show that it is possible to estimate robustly and independently the thermal detection thresholds of Aδ-fibres (46.9±1.7°C) and C-fibres (39.8±1.7°C). Furthermore, we show that both thresholds are dependent on the skin temperature preceding and/or surrounding the test stimulus, indicating that the Aδ- and C-fibre afferents triggering the behavioural responses to brief laser pulses behave, at least partially, as detectors of a change in skin temperature rather than as pure level detectors. Most importantly, our results show that the difference in threshold between Aδ- and C-fibre afferents activated by brief laser pulses can be exploited to activate C-fibres selectively and reliably, provided that the rise in skin temperature generated by the laser stimulator is well-controlled. Our approach could constitute a tool to explore, in humans, the physiological and pathophysiological mechanisms involved in processing C- and Aδ-fibre input, respectively

    A systematic review on the effects of group singing on persistent pain in people with long‐term health conditions

    Get PDF
    Singing can have a range of health benefits; this paper reviews the evidence of the effects of group singing for chronic pain in people with long‐term health conditions. We searched for published peer‐reviewed singing studies reporting pain measures (intensity, interference and depression) using major electronic databases (last search date 31 July 2018). After screening 123 full texts, 13 studies met the inclusion criteria: five randomized controlled trials (RCTs), seven non‐RCTs and one qualitative study. Included studies were appraised using Downs and Black and the Critical Appraisals Skills Programme quality assessments. Included studies reported differences in the type of singing intervention, long‐term condition and pain measures. Due to the high heterogeneity, we conducted a narrative review. Singing interventions were found to reduce pain intensity in most studies, but there was more equivocal support for reducing pain interference and depression. Additionally, qualitative data synthesis identified three key linked and complementary themes: physical, psychological and social benefits. Group singing appears to have the potential to reduce pain intensity, pain interference and depression; however, we conclude that there is only partial support for singing on some pain outcomes based on the limited available evidence of varied quality. Given the positive findings of qualitative studies, this review recommends that practitioners are encouraged to continue this work. More studies of better quality are needed. Future studies should adopt more robust methodology and report their singing intervention in details. Group singing may be an effective and safe approach for reducing persistent pain and depression in people with long‐term health conditions.Health and Social Care Research Centr

    From "Breakthrough" to "Episodic" Cancer Pain? A European Association for Palliative Care Research Network Expert Delphi Survey Towards a Common Terminology and Classification of Transient Cancer Pain Exacerbations

    Get PDF
    Context: Cancer pain can appear with spikes of higher intensity. Breakthrough cancer pain (BTCP) is the most common term for the transient exacerbations of pain, but the ability of the nomenclature to capture relevant pain variations and give treatment guidance is questionable. Objectives: To reach consensus on definitions, terminology, and sub classification of transient cancer pain exacerbations. Methods: The most frequent authors on BTCP literature were identified using the same search strategy as in a systematic review and invited to participate in a two-round Delphi survey. Topics with a low degree of consensus on BTCP classification were refined into twenty statements. The participants rated their degree of agreement with the statements on a numeric rating scale (NRS 0-10). Consensus was defined as a median NRS score of ≥ 7 and an interquartile range of ≤ 3. Results: Fifty-two authors had published three or more papers on BTCP over the past ten years. Twenty-seven responded in the first round and 24 in the second round. Consensus was reached for 13 of 20 statements. Transient cancer pain exacerbations can occur without background pain, when background pain is uncontrolled, and regardless of opioid treatment. There exist cancer pain exacerbations other than BTCP, and the phenomenon could be named “episodic pain”. Patient reported treatment satisfaction is important with respect to assessment. Sub classification according to pain pathophysiology can provide treatment guidance. Conclusion: Significant transient cancer pain exacerbations include more than just BTCP. Patient input and pain classification are important factors for tailoring treatment

    Tolerability of NGX-4010, a capsaicin 8% dermal patch, following pretreatment with lidocaine 2.5%/prilocaine 2.5% cream in patients with post-herpetic neuralgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-herpetic neuralgia (PHN) is a common type of neuropathic pain that can severely affect quality of life. NGX-4010, a capsaicin 8% dermal patch, is a localized treatment that can provide patients with significant pain relief for up to 3 months following a single 60-minute application. The NGX-4010 application can be associated with application-site pain and in previous clinical trials pretreatment with a topical 4% lidocaine anesthetic was used to enhance tolerability. The aim of the current investigation was to evaluate tolerability of NGX-4010 after pretreatment with lidocaine 2.5%/prilocaine 2.5% anesthetic cream.</p> <p>Methods</p> <p>Twenty-four patients with PHN were pretreated with lidocaine 2.5%/prilocaine 2.5% cream for 60 minutes before receiving a single 60-minute application of NGX-4010. Tolerability was assessed by measuring patch application duration, the proportion of patients completing over 90% of the intended treatment duration, application site-related pain using the Numeric Pain Rating Scale (NPRS), and analgesic medication use to relieve such pain. Safety was assessed by monitoring adverse events (AEs) and dermal irritation using dermal assessment scores.</p> <p>Results</p> <p>The mean treatment duration of NGX-4010 was 60.2 minutes and all patients completed over 90% of the intended patch application duration. Pain during application was transient. A maximum mean change in NPRS score of +3.0 was observed at 55 minutes post-patch application; pain scores gradually declined to near pre-anesthetic levels (+0.71) within 85 minutes of patch removal. Half of the patients received analgesic medication on the day of treatment; by Day 7, no patients required medication. The most common AEs were application site-related pain, erythema, edema, and pruritus. All patients experienced mild dermal irritation 5 minutes after patch removal, which subsequently decreased; at Day 7, no irritation was evident. The maximum recorded dermal assessment score was 2.</p> <p>Conclusion</p> <p>NGX-4010 was well tolerated following pretreatment with lidocaine 2.5%/prilocaine 2.5% cream in patients with PHN. The tolerability of the patch application appeared comparable with that seen in other studies that used 4% lidocaine cream as the pretreatment anesthetic. This study is registered at <url>http://www.clinicaltrials.gov</url> as number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00916942">NCT00916942</a>.</p

    Identification and management of chronic pain in primary care:a review

    Get PDF
    Chronic pain is a common, complex, and challenging condition, where understanding the biological, social, physical and psychological contexts is vital to successful outcomes in primary care. In managing chronic pain the focus is often on promoting rehabilitation and maximizing quality of life rather than achieving cure. Recent screening tools and brief intervention techniques can be effective in helping clinicians identify, stratify and manage both patients already living with chronic pain and those who are at risk of developing chronic pain from acute pain. Frequent assessment and reassessment are key to ensuring treatment is appropriate and safe, as well as minimizing and addressing side effects. Primary care management should be holistic and evidence-based (where possible) and incorporates both pharmacological and non-pharmacological approaches, including psychology, self-management, physiotherapy, peripheral nervous system stimulation, complementary therapies and comprehensive pain-management programmes. These may either be based wholly in primary care or supported by appropriate specialist referral

    IMI2-PainCare-BioPain-RCT3: a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by electroencephalography (EEG)

    Get PDF
    Background IMI2-PainCare-BioPain-RCT3 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics, by providing a quantitative understanding between drug exposure and effects of the drug on nociceptive signal processing in human volunteers. IMI2-PainCare-BioPain-RCT3 will focus on biomarkers derived from non-invasive electroencephalographic (EEG) measures of brain activity. Methods This is a multisite single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from scalp EEG measurements (laser-evoked brain potentials [LEPs], pinprick-evoked brain potentials [PEPs], resting EEG) will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose in separate study periods. Medication effects will be assessed concurrently in a non-sensitized normal condition and a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin). Patient-reported outcomes will also be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between LEP and PEP under tapentadol. Remaining treatment arm effects on LEP or PEP or effects on EEG are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modeling are exploratory. Discussion LEPs and PEPs are brain responses related to the selective activation of thermonociceptors and mechanonociceptors. Their amplitudes are dependent on the responsiveness of these nociceptors and the state of the pathways relaying nociceptive input at the level of the spinal cord and brain. The magnitude of resting EEG oscillations is sensitive to changes in brain network function, and some modulations of oscillation magnitude can relate to perceived pain intensity, variations in vigilance, and attentional states. These oscillations can also be affected by analgesic drugs acting on the central nervous system. For these reasons, IMI2-PainCare-BioPain-RCT3 hypothesizes that EEG-derived measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. Trial registration This trial was registered 25/06/2019 in EudraCT (2019%2D%2D001204-37)

    Lipid Alterations in Experimental Murine Colitis: Role of Ceramide and Imipramine for Matrix Metalloproteinase-1 Expression

    Get PDF
    BACKGROUND:Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. METHODOLOGY/PRINCIPAL FINDINGS:Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4(+)CD62L(+) cells into RAG1(-/-)-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. CONCLUSIONS/SIGNIFICANCE:Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions

    Gender-Related Differences in the Dysfunctional Resting Networks of Migraine Suffers

    Get PDF
    BACKGROUND: Migraine shows gender-specific incidence and has a higher prevalence in females. However, little is known about gender-related differences in dysfunctional brain organization, which may account for gender-specific vulnerability and characteristics of migraine. In this study, we considered gender-related differences in the topological property of resting functional networks. METHODOLOGY/PRINCIPAL FINDINGS: Data was obtained from 38 migraine patients (18 males and 20 females) and 38 healthy subjects (18 males and 20 females). We used the graph theory analysis, which becomes a powerful tool in investigating complex brain networks on a whole brain scale and could describe functional interactions between brain regions. Using this approach, we compared the brain functional networks between these two groups, and several network properties were investigated, such as small-worldness, network resilience, nodal centrality, and interregional connections. In our findings, these network characters were all disrupted in patients suffering from chronic migraine. More importantly, these functional damages in the migraine-affected brain had a skewed balance between males and females. In female patients, brain functional networks showed worse resilience, more regions exhibited decreased nodal centrality, and more functional connections revealed abnormalities than in male patients. CONCLUSIONS: These results indicated that migraine may have an additional influence on females and lead to more dysfunctional organization in their resting functional networks

    Local Translation in Primary Afferent Fibers Regulates Nociception

    Get PDF
    Recent studies have demonstrated the importance of local protein synthesis for neuronal plasticity. In particular, local mRNA translation through the mammalian target of rapamycin (mTOR) has been shown to play a key role in regulating dendrite excitability and modulating long-term synaptic plasticity associated with learning and memory. There is also increased evidence to suggest that intact adult mammalian axons have a functional requirement for local protein synthesis in vivo. Here we show that the translational machinery is present in some myelinated sensory fibers and that active mTOR-dependent pathways participate in maintaining the sensitivity of a subpopulation of fast-conducting nociceptors in vivo. Phosphorylated mTOR together with other downstream components of the translational machinery were localized to a subset of myelinated sensory fibers in rat cutaneous tissue. We then showed with electromyographic studies that the mTOR inhibitor rapamycin reduced the sensitivity of a population of myelinated nociceptors known to be important for the increased mechanical sensitivity that follows injury. Behavioural studies confirmed that local treatment with rapamycin significantly attenuated persistent pain that follows tissue injury, but not acute pain. Specifically, we found that rapamycin blunted the heightened response to mechanical stimulation that develops around a site of injury and reduced the long-term mechanical hypersensitivity that follows partial peripheral nerve damage - a widely used model of chronic pain. Our results show that the sensitivity of a subset of sensory fibers is maintained by ongoing mTOR-mediated local protein synthesis and uncover a novel target for the control of long-term pain states
    corecore