293 research outputs found
Atlas 5013 tank corrosion test
The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined
Informal Leadership Status and Individual Performance: The Roles of Political Skill and Political Will
Informal leadership has been a topic of growing interest in recent years, with the recognition that much remains to be known about this phenomenon. In the present study, an integrative social-political conceptualization of informal leadership is proposed and tested. The research question was tested through individual self-report survey questions, a network-based consensus informal leadership measure whereby each employee identified informal leaders in their network, and individual performance provided by the organization. Specifically, the mediated moderation test demonstrated that employees high in political will, as operationalized by power motivation, were more likely to be collectively recognized as informal leaders than those low in political will, and the performance of these informal leaders was found to be contingent on their political skill. By capturing informal leadership using a consensus measure, the results of this study provide a first look at informal leadership in an organizational setting, not team or group. Furthermore, the current research offers a social networkpolitical conceptualization of informal leadership in organizations that contributes to theory, research, and practice
Properties of Ellipticity Correlation with Atmospheric Structure from Gemini South
Cosmic shear holds great promise for a precision independent measurement of
, the mass density of the universe relative to the critical
density. The signal is expected to be weak, so a thorough understanding of
systematic effects is crucial. An important systematic effect is the
atmosphere: shear power introduced by the atmosphere is larger than the
expected signal. Algorithms exist to extract the cosmic shear from the
atmospheric component, though a measure of their success applied to a range of
seeing conditions is lacking.
To gain insight into atmospheric shear, Gemini South imaging in conjunction
with ground condition and satellite wind data were obtained. We find that under
good seeing conditions Point-Spread-Function (PSF) correlations persist well
beyond the separation typical of high-latitude stars. Under these conditions,
ellipticity residuals based on a simple PSF interpolation can be reduced to
within a factor of a few of the shot-noise induced ellipticity floor. We also
find that the ellipticity residuals are highly correlated with wind direction.
Finally, we correct stellar shapes using a more sophisticated procedure and
generate shear statistics from stars. Under all seeing conditions in our data
set the residual correlations lie everywhere below the target signal level. For
good seeing we find that the systematic error attributable to atmospheric
turbulence is comparable in magnitude to the statistical error (shape noise)
over angular scales relevant to present lensing surveys.Comment: To appear in ApJ April 10, 2007, 659
Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes
<p>Abstract</p> <p>Background</p> <p>Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM), glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr<sup>-/-</sup>) compared to wild-type littermates.</p> <p>Results</p> <p>Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes) using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88) for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels.</p> <p>Conclusions</p> <p>In sum, the results of this study suggest that the complete ablation of hepatic glucagon receptor function results in major metabolic alterations in the liver, which, while promoting improved glycemic control, may be associated with adverse lipid changes.</p
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Meditation experience is associated with increased cortical thickness.
Abstract Previous research indicates that long-term meditation practice is associated with altered resting electroencephalogram patterns, suggestive of long lasting changes in brain activity. We hypothesized that meditation practice might also be associated with changes in the brain's physical structure. Magnetic resonance imaging was used to assess cortical thickness in 20 participants with extensive Insight meditation experience, which involves focused attention to internal experiences. Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than matched controls, including the prefrontal cortex and right anterior insula. Betweengroup differences in prefrontal cortical thickness were most pronounced in older participants, suggesting that meditation might offset age-related cortical thinning. Finally, the thickness of two regions correlated with meditation experience. These data provide the first structural evidence for experience-dependent cortical plasticity associated with meditation practice
Meditation experience is associated with increased cortical thickness.
Previous research indicates that long-term meditation practice is associated with altered resting electroencephalogram patterns, suggestive of long lasting changes in brain activity. We hypothesized that meditation practice might also be associated with changes in the brain's physical structure. Magnetic resonance imaging was used to assess cortical thickness in 20 participants with extensive Insight meditation experience, which involves focused attention to internal experiences. Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than matched controls, including the prefrontal cortex and right anterior insula. Between-group di¡er-ences in prefrontal cortical thickness were most pronounced in older participants, suggesting that meditation might o¡set age-related cortical thinning. Finally, the thickness of two regions correlated with meditation experience. These data provide the ¢rst structural evidence for experience-dependent cortical plasticity associated with meditation practice. NeuroReport 16:1893^189
Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation
There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity
Recommended from our members
Can understanding reward help illuminate anhedonia?
Purpose of review: The goal of this paper is to examine how reward processing might help us understand the symptom of anhedonia.
Recent findings: There are extensive reviews exploring the relationship between responses to rewarding stimuli and depression. These often include a discussion on anhedonia and how this might be underpinned in particular by dysfunctional reward processing. However, there is no specific consensus on whether studies to date have adequately examined the various sub-components of reward processing or how these might relate in turn to various aspects of anhedonia symptoms.
Summary: The approach to understanding the symptom of anhedonia should be to examine all the sub-components of reward processing at the subjective and objective behavioural and neural level, with well validated tasks that can be replicated. Investigating real life experiences of anhedonia and how theses might be predicted by objective lab measures is also needed in future research
Temporal and effort cost decision-making in healthy individuals with subclinical psychotic symptoms
The value people attribute to rewards is influenced both by the time and the effort required to obtain them. Impairments in these computations are described in patients with schizophrenia and appear associated with negative symptom severity. This study investigated whether deficits in temporal and effort cost computations can be observed in individuals with subclinical psychotic symptoms (PS) to determine if this dysfunction is already present in a potentially pre-psychotic period. Sixty participants, divided into three groups based on the severity of PS (high, medium and low), performed two temporal discounting tasks with food and money and a concurrent schedule task, in which the effort to obtain food increased over time. We observed that in high PS participants the discounting rate appeared linear and flatter than that exhibited by participants with medium and low PS, especially with food. In the concurrent task, compared to those with low PS, participants with high PS exerted tendentially less effort to obtain snacks only when the required effort was high. Participants exerting less effort in the higher effort condition were those with higher negative symptoms. These results suggest that aberrant temporal and effort cost computations might be present in individuals with subclinical PS and therefore could represent a vulnerability marker for psychosis
- …