12 research outputs found

    Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours

    Get PDF
    Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies

    D for division or dream?

    No full text

    The NHS England 100,000 Genomes Project: feasibility and utility of centralised genome sequencing for children with cancer.

    Get PDF
    BACKGROUND: Whole-genome sequencing (WGS) of cancers is becoming an accepted component of oncological care, and NHS England is currently rolling out WGS for all children with cancer. This approach was piloted during the 100,000 genomes (100 K) project. Here we share the experience of the East of England Genomic Medicine Centre (East-GMC), reporting the feasibility and clinical utility of centralised WGS for individual children locally. METHODS: Non-consecutive children with solid tumours were recruited into the pilot 100 K project at our Genomic Medicine Centre. Variant catalogues were returned for local scrutiny and appraisal at dedicated genomic tumour advisory boards with an emphasis on a detailed exploration of potential clinical value. RESULTS: Thirty-six children, representing one-sixth of the national 100 K cohort, were recruited through our Genomic Medicine Centre. The diagnoses encompassed 23 different solid tumour types and WGS provided clinical utility, beyond standard-of-care assays, by refining (2/36) or changing (4/36) diagnoses, providing prognostic information (8/36), defining pathogenic germline mutations (1/36) or revealing novel therapeutic opportunities (8/36). CONCLUSION: Our findings demonstrate the feasibility and clinical value of centralised WGS for children with cancer. WGS offered additional clinical value, especially in diagnostic terms. However, our experience highlights the need for local expertise in scrutinising and clinically interpreting centrally derived variant calls for individual children.The 100,000 Genomes Project is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. Tom Jacques is funded by the Brain Tumour Charity, Children with Cancer UK, Great Ormond Street Hospital Children’s Charity, Olivia Hodson Cancer Fund, Cancer Research UK and the National Institute of Health Research via the Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre

    L1CAM variants cause two distinct imaging phenotypes on fetal MRI

    No full text
    Data on fetal MRI in L1 syndrome are scarce with relevant implications for parental counseling and surgical planning. We identified two fetal MR imaging patterns in 10 fetuses harboring L1CAM mutations: the first, observed in 9 fetuses was characterized by callosal anomalies, diencephalosynapsis, and a distinct brainstem malformation with diencephalic-mesencephalic junction dysplasia and brainstem kinking. Cerebellar vermis hypoplasia, aqueductal stenosis, obstructive hydrocephalus, and pontine hypoplasia were variably associated. The second pattern observed in one fetus was characterized by callosal dysgenesis, reduced white matter, and pontine hypoplasia. The identification of these features should alert clinicians to offer a prenatal L1CAM testing.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted version, submitted versio
    corecore