13 research outputs found

    Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra

    Get PDF
    This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.Peer ReviewedPostprint (author’s final draft

    Typology of rural contexts in the Sudoe area: characterisation of rural territories in the Sudoe area

    Get PDF
    The COLEOPTER (COncertation LocalE pour l’Optimisation des Politiques Territoriales pour l’Energie Rurale) project develops an integrated approach to the energy efficiency of public buildings that links technical, social and economic challenges. COLEOPTER addresses two energy efficiency challenges in buildings: difficulties for rural municipalities to act and carry out work despite the positive local impact (i.e., energy savings and local employment) and a lack of awareness of building challenges, which leads to irrational use of energy and low renovation rates.The COLEOPTER project (SOE3/P3/F0951) is financed by the Interreg Sudoe Programme that supports regional development in Southern Europe, financing transnational projects through the European Regional Development Fund.Preprin

    Guide of references for water-energy renovation and construction in the Sudoe area: characterisation of rural territories in the Sudoe area

    Get PDF
    The COLEOPTER (COncertation LocalE pour l’Optimisation des Politiques Territoriales pour l’Energie Rurale) project develops an integrated approach to the energy efficiency of public buildings that links technical, social and economic challenges. COLEOPTER addresses two energy efficiency challenges in buildings: difficulties for rural municipalities to act and carry out work despite the positive local impact (i.e., energy savings and local employment) and a lack of awareness of building challenges, which leads to irrational use of energy/water and low renovation rates.The COLEOPTER project (SOE3/P3/F0951) is financed by the Interreg Sudoe Programme that supports regional development in Southern Europe, financing transnational projects through the European Regional Development Fund.Preprin

    Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    Get PDF
    This paper builds a model to estimate current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. It shows how a useful modelling tool can be developed and applied in the absence of significant data. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, four scenarios are built to represent the largest expected variability in the results with respect to the reference scenario and provide a broad estimate of potential energy savings related to different policy strategiesPreprin

    Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    Get PDF
    This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategiesPeer ReviewedPostprint (author's final draft

    Rumo à auto-suficiência energética nas cidades: análise do potencial solar fotovoltaico à escala urbana no Principado de Andorra

    Get PDF
    INTRODUCCIÓN. Una parte importante de países y ciudades se han comprometido a la neutralidad de carbono en 2050. Incluso algunos van más allá y hablan de autosuficiencia energética en las ciudades. Ante estos retos mayúsculos, las energías renovables se presentan como una de las opciones principales a tener en cuenta. Conocer su potencial a gran escala es el primer paso para conseguir una implantación masiva. OBJETIVO. Este artículo describe un caso de estudio en el que se analiza el potencial de generación eléctrica a escala de país mediante sistemas fotovoltaicos instalados en los tejados de los edificios. MÉTODO. Para ello se utiliza una metodología que combina Sistemas de Información Geográfica (SIG) y datos LiDAR (Lighting Detection And Ranging). RESULTADOS. Los resultados muestran que, con la instalación de sistemas fotovoltaicos en prácticamente la totalidad de los edificios del país, se cubriría el 48% de la demanda eléctrica actual. DISCUSIÓN Y CONCLUSIONES. A pesar de que el potencial estimado es significativo, una reflexión profunda sobre los resultados lleva a pensar que la autosuficiencia energética en un contexto urbano es difícilmente viable. De todas maneras, análisis como el presentado en este estudio son de vital importancia para dar apoyo a la definición de políticas que conduzcan a países y ciudades a cumplir con sus objetivos en materia energética y de cambio climático.Los autores agradecen a la Oficina de la Energía y del Cambio Climático de Andorra y al Departamento de Cartografía del Gobierno de Andorra haber proporcionado la cartografía, los datos históricos de producción fotovoltaica y los datos LiDAR imprescindibles para la realización de este estudio.Postprint (published version

    Modelização energética do parque imobiliário à escala urbana: inquéritos como complemento dos dados cadastrais na fase de caracterização

    Get PDF
    INTRODUCCIÓN. La falta de información detallada sobre las propiedades que afectan al comportamiento energético de los edificios es uno de los principales obstáculos a la hora de realizar modelos energéticos del parque edificado. Esta falta de datos es uno de los motivos por el que estos modelos pueden presentar un importante desajuste entre el consumo energético estimado por los modelos, y el consumo energético real, lo que puede reducir su fiabilidad. OBJETIVO. El presente trabajo presenta un caso de estudio en el cual se ha recopilado parte de la información no disponible de los edificios con el objetivo de reducir la brecha entre los resultados de las simulaciones y el consumo real. MÉTODO. Para ello se ha diseñado una encuesta que ha permitido recopilar la información necesaria para la generación de un modelo del parque edificado de la parroquia de Escaldes-Engordany en el Principado de Andorra. RESULTADOS. Los resultados muestran que las encuestas tienen un gran potencial para completar la información existente relacionada con los edificios. DISCUSIÓN Y CONCLUSIONES. A pesar de su potencial, la recogida de información mediante encuestas también tiene ciertas particularidades que pueden variar significativamente los resultados obtenidos a partir de estas.Este trabajo ha sido posible gracias a la colaboración del Observatori de la Sostenibilitat d’Andorra (UPC), y la Universitat Politècnica de Catalunya (UPC) en el marco del proyecto de investigación BIA2016-77675-R concedido por el Ministerio de Economía y Competitividad (MINECO) del Gobierno de España, y el Centre de Recerca Sociològica del Institut d’Estudis Andorrans (CRES-IEA). La autora Patricia Borges, agradece al Gobierno de Andorra la ayuda de tercer ciclo, ATC021-AND-2018/2019, 2019/2020.Postprint (published version

    Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    No full text
    This paper builds a model to estimate current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. It shows how a useful modelling tool can be developed and applied in the absence of significant data. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, four scenarios are built to represent the largest expected variability in the results with respect to the reference scenario and provide a broad estimate of potential energy savings related to different policy strategie

    Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    No full text
    This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategiesPeer Reviewe

    Planning Freight Delivery Routes in Mountainous Regions

    No full text
    International audienceThe planning of delivery routes in mountainous areas should pay attention to the fact that certain types of vehicles (such as large trucks) may be unable to reach some customers. The use of heterogeneous fleet is then a must. Moreover, the costs of a given route may be very different depending on the sense taken. The site-dependent capacitated vehicle routing problem with heterogeneous fleet and asymmetric costs is solved with the successive approximations method. The solution methodology proposed is tested on a set of benchmark instances. Preliminary tests carried out show the benefits, in terms of total costs, when using a heterogeneous fleet. In both cases, with and without site dependency, the increase in distance-based costs is mitigated by the use of heterogeneous fleet
    corecore