139 research outputs found

    The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2

    Get PDF
    The development of titanium dioxide (TiO2) as a gas sensor for combustion and exhaust air pollutants monitoring is strongly dependent on its properties such as thermal stability, grain size and surface area. In this study, nanostructure TiO2 with its thermal stability enhanced by niobium dopant (Nb–TiO2) was synthesized using the water-in-oil (w/o) microemulsion system of n-heptane/water/sodium bis (2-ethylhexyl) sulfosuccinate (AOT) surfactant and was compared with undoped TiO2. It was found that the synthesized powder was of uniform size (14 nm) and high surface area (80 m2/g). Nb-doped TiO2 at a level of 3–5 mole% clearly hinders the anatase to rutile phase transformation and inhibits the grain growth in comparison with pure TiO2. The nanostructure of anatase was maintained even after the powder was fired at 850 °C. The result indicates that sensitivity of CO is significantly increased with an increase of thermal stability of Nb-doped TiO2 in comparison with those of undoped TiO2 and thus is useful for CO sensing studies at high temperatures

    BaZr(0.8)Y(0.2)O(3-delta)-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method

    Get PDF
    BaZr0.8Y0.2O3-∂ (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100°C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2, whereas comparative tests under the same conditions showed degradation for BaCe0.7Zr0.1Y0.2O3-∂- NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt % BZY and 50 wt % NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 Ω cm2 at 600°C). The 50 wt % BZY and 50 wt % NiO anode prepared by combustion also showed superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt

    The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox?

    Get PDF
    Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility

    Influence of TiO2 nanometric filler on the behaviour of a composite membrane for applications in direct methanol fuel cells

    Get PDF
    Composite Nafion membranes containing various amounts of TiO2 (3 wt%, 5 wt% and 10 wt%) were investigated for operation in high temperature Direct Methanol Fuel Cells (DMFCs). Maximum power density of 350 mW cm -2 was achieved in the presence of oxygen feed at 145°C for the composite membranes containing 3-5 wt% TiO2; whereas, the maximum power density with air feed was about 210 mW cm-2. Moreover, an investigation of the influence of titanium oxide particle size on the electrochemical behaviour of the composite membranes for high temperature operation has been carried out. The DMFC performance increases as the mean particle size of the TiO2 filler decreases. This indicates an influence of the filler morphology on the electrochemical properties of the composite membranes. © J. New. Mat. Electrochem. Systems

    Not Only Redox: The Multifaceted Activity of Cerium Oxide Nanoparticles in Cancer Prevention and Therapy

    Get PDF
    Much information is accumulating on the effect of cerium oxide nanoparticles (CNPs) as cell-protective agents, reducing oxidative stress through their unique ability of scavenging noxious reactive oxygen species via an energy-free, auto-regenerative redox cycle, where superoxides and peroxides are sequentially reduced exploiting the double valence (Ce3+/Ce4+) on nanoparticle surface. In vitro and in vivo studies consistently report that CNPs are responsible for attenuating and preventing almost any oxidative damage and pathology. Particularly, CNPs were found to exert strong anticancer activities, helping correcting the aberrant homeostasis of cancer microenvironment, normalizing stroma-epithelial communication, contrasting angiogenesis, and strengthening the immune response, leading to reduction of tumor mass in vivo. Since these homeostatic alterations are of an oxidative nature, their relief is generally attributed to CNPs redox activity. Other studies however reported that CNPs exert selective cytotoxic activity against cancer cells and sensitize cancer cells to chemotherapy- and radiotherapy-induced apoptosis: such effects are hardly the result of antioxidant activity, suggesting that CNPs exert such important anticancer effects through additional, non-redox mechanisms. Indeed, using Sm-doped CNPs devoid of redox activity, we could recently demonstrate that the radio-sensitizing effect of CNPs on human keratinocytes is independent from the redox switch. Mechanisms involving particle dissolution with release of toxic Ce4+ atoms, or differential inhibition of the catalase vs. SOD-mimetic activity with accumulation of H2O2 have been proposed, explaining such intriguing findings only partially. Much effort is urgently required to address the unconventional mechanisms of the non-redox bioactivity of CNPs, which may provide unexpected medicinal tools against cancer

    A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity

    Get PDF
    Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Herein we present a simple direct precipitation approach, exploiting ethylene glycol as synthesis co-factor, to synthesize at room temperature nanocrystalline sub-10 nm CNPs, followed by a surface silanization approach to improve nanoparticle dispersibility in biological fluids. CNPs were characterized using transmission electron microscopy (TEM) observations, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (H-1-NMR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. CNP redox activity was studied in abiotic systems using electron spin resonance (ESR) measurements, and in vitro on human cell models. In-situ silanization improved CNP colloidal stability, in comparison with non-functionalized particles, and allowed at the same time improving their original biological activity, yielding thus functionalized CNPs suitable for biomedical applications
    • …
    corecore