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BaZr(0.8)Y(0.2)0(3-delta)-NiO Composite Anodic Powders for Proton-Conducting
SOFCs Prepared by a Combustion Method

Abstract

BaZrp.8Y0.203-3 (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a
combustion method as anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to
1100°C for 6 h, the composite powders were made of a well-dispersed mixture of two phases, BZY and
NiO. Chemical stability tests showed that the BZY-NiO anodic powders had good stability against CO2,
whereas comparative tests under the same conditions showed degradation for BaCep.7Zrg.1Y0.203-3- NiO,

which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance
(ASR) measurements for BZY-NiO anodes showed that their electrochemical performance depended on

the BZY-NiO weight ratio. The best performance was obtained for the anode containing 50 wt % BZY and
50 wt % NiO, which showed the smallest ASR values in the whole testing temperature range (0.37 Q cm?2

at 600°C). The 50 wt % BZY and 50 wt % NiO anode prepared by combustion also showed superior
performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well
as that of Pt.
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BaZrgY(,03_5-NiO Composite Anodic Powders for Proton-
Conducting SOFCs Prepared by a Combustion Method

Lei Bi, Emiliana Fabbri,* Ziqi Sun, and Enrico Traversa™”

International Center for Materials Nanoarchitectnics, National Institute for Materials Science, Tsukuba, Ibaraki

305-0044, Japan

BaZrp3Y0,0;5_s (BZY)-NiO composite powders with different BZY-NiO weight ratios were prepared by a combustion method as
anodes for proton-conducting solid oxide fuel cells (SOFCs). After heating to 1100°C for 6 h, the composite powders were made
of a well-dispersed mixture of two phases, BZY and NiO. Chemical stability tests showed that the BZY-NiO anodic powders had
good stability against CO,, whereas comparative tests under the same conditions showed degradation for BaCeq 7Zrp 1Y0203_5-
NiO, which is at present the most used anode material for proton-conducting SOFCs. Area specific resistance (ASR) measurements
for BZY-NiO anodes showed that their electrochemical performance depended on the BZY-NiO weight ratio. The best perform-
ance was obtained for the anode containing 50 wt % BZY and 50 wt % NiO, which showed the smallest ASR values in the whole
testing temperature range (0.37 Q cm? at 600°C). The 50 wt % BZY and 50 wt % NiO anode prepared by combustion also showed
superior performance than that of the BZY-NiO anode conventionally made by a mechanical mixing route, as well as that of Pt.
©2011 The Electrochemical Society. [DOI: 10.1149/1.3591040] All rights reserved.

Manuscript submitted February 8, 2011; revised manuscript received April 18, 2011. Published May 9, 2011.

Proton-conducting solid oxide fuel cells (SOFCs) have attracted
much attention because they provide an effective way to lower the
operating temperature of SOFCs.'™ Working at low temperatures
requires not only the development of electrolyte materials with high
ionic conductivity but also the development of cathode as well as
anode materials that show good electrochemical performance at in-
termediate temperatures.*® In the SOFC community, the most used
anodes are the electrolyte-NiO composite materials,” also for pro-
ton-conducting SOFCs.'*!"! ComParing with the studies on electro-
lytelzfl4 and cathode materials,'”""” studies on the anode material
for proton-conducting SOFCs are only a few and focused on com-
posite anodes made of NiO and barium (or strontium) cerate. 872!
However, the poor chemical stability of alkaline earth cerates in
CO, and H,O containing atmosphere makes them unsuitable for
practical applications.>**% On the other hand, doped BaZrOs;
shows good chemical stability against CO, and H,O (Refs. 3 and
24) and it gradually becomes a hot material as electrolyte for pro-
ton-conducting SOFCs.2"~% Therefore, it is reasonable to assume
that the BaZrO5-NiO composite anode could show good chemical
stability and has a great potential in fuel cell applications. In our
recent study,’® sinteractive BaZrO;-NiO composite anode powders
were successfully used to promote the densification of deposited
BaZrO; films, demonstrating promise in fuel cell performance.
Therefore, further thorough studies on the electrochemical proper-
ties of BaZrO5-NiO anodes are desirable.

In addition, in the mentioned studies on anodes for proton-
conducting SOFCs, there is a large scattering in the electrochemical
performance of the anodes: the measured area specific resistance
(ASR) values measured at the same temperature of 600°C varied
between 0.06 Q cm?® and 10 Q cm?, although the anode composi-
tions were almost similar.'®° This evidence suggests that the elec-
trochemical performance of anodes based on protonic conductors
deserve further attention.

Recent studies show that the microstructure of the anode is criti-
cal to SOFC performance.>' The conventional mechanical mixing
route for producing anode powders, which simply mix NiO and
electrolyte materials together by ball milling, may result in an inho-
mogeneous distribution of the two phases. Moreover, wet chemical
routes are regarded as effective ways to produce ultra-fine and uni-
form powders, which can enlarge the length of the triPle-phase
boundary (TPB) where electrochemical reactions occur.”? There-
fore, a combustion method was used in this study to prepare
BaZry3Y .05 s (BZY)-NiO composite anodic powders in one step
with different BZY-NiO weight ratios. Microstructure and chemical

* Electrochemical Society Active Member
* E-mail: TRAVERSA.Enrico@nims.go.jp

stability were studied for the BZY-NiO anode powders, and sym-
metrical cells were fabricated to investigate their electrochemical
properties. An optimal composition between BZY and NiO was
identified examining the performance of BZY-based anodes. The
electrochemical performance of the BZY-NiO anode powders pre-
pared by the combustion method was also compared with that of
both Pt and BZY-NiO anode conventionally prepared by mixing,
indicating that the combustion method provided a simple route to
obtain stable and high performance BZY-NiO anodes for proton-
conducting SOFCs.

Experimental

BaZr3Y020;_s5 (BZY)-NiO composite anodic powders with differ-
ent weight ratios (BZY:NiO = 20:80, 30:70, 40:60, 50:50 and 60:40)
were synthesized in one step by a combustion method. Stoichiometric
amounts of Ba(NOs), (99.9% purity, Wako), ZrO(NOs),-2H,0 (97%
purity, Wako), Y(NO;);-:6H,O (99.8%, Aldrich) and (CH3;COO),.
Ni-4H,O (98% purity, Wako) were dissolved in distilled water. As a
complexing agent, citric acid was then added, setting at 1.5 the molar
ratio of citric acid/metal. NH,OH was added to the solution to adjust the
pH value around 8. The solution was heated under stirring and finally
ignited to flame, resulting in a black ash. The ash was heated to 1100°C
for 6 h to form fine BZY-NiO powders. From now on, BaZr3Y (2035
(BZY)-NiO is named as BZY-NiO and acronym is followed by a num-
ber indicating the weight percentage of NiO in the composite powder,
and BZY-Ni is used to describe its corresponding reduced state, also fol-
lowed by a number indicating the NiO weight content in the original
BZY-NiO powder. BaCey7Zro1Y0205_5 (BCZY) electrolyte powder
was also synthesized by the combustion method mentioned above, using
Ba(NO3)2, CC(N03)3'6H20, ZrO(NO3)22H20, and Y(N03)36H20 as
the starting materials. The BCZY powder was heated to 1000°C for 6 h.
X-ray diffraction (XRD, Rigaku, with Cu Ka radiation) analysis was
used to identify the phase structures of the as-prepared powders. Ther-
mogravimetric (TG, NETZSCH STA 409C/CD) analysis in CO, atmos-
phere was carried out to investigate the chemical stability of BZY-NiO
anodic powders at a heating rate of 10°C min™". The TG measurements
were held at 700°C for 3 h and 100% CO, was used as the flowing gas
at a rate of 100 ml min~'. For comparison, BCZY-NiO composite an-
odic powder was tested in the same environment. The phase composi-
tion of these powders after TG test was analyzed by XRD.

Symmetrical anode/electrolyte/anode assemblies were fabricated
by a co-pressing technique. The BCZY powder was first pressed at
100 MPa. Then the BZY-NiO anode powder was directly deposited
on the green BCZY surface and pressed at 150 MPa before fabricat-
ing the second BZY-NiO layer at the opposite face of the BCZY
electrolyte that was pressed at 200 MPa. The diameter of the green
pellets was 13 mm. The tri-layer assemblies were fired at 1400°C
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for 6 h to form the symmetrical cells with anode layer at both sides
of the electrolyte. The symmetrical cells were firstly heated to
700°C and kept at 700°C in a wet 20% H, in Ar atmosphere (~3%
H,0) for 2 h to reduce the anode before electrochemical testing.
The cells were then tested in a wet 20% H, in Ar atmosphere (~3%
H,0) at a flowing rate of 50 ml min~' using a multichannel poten-
tiostat (VMP3 Bio-Logic Co.) in the frequency range between from
0.1 Hz to 1 MHz, with an AC voltage amplitude of 100 mV. The im-
pedance spectra were fitted with Zview software.

Scanning electron microscopy (SEM, Hitachi S-4800) was used
to observe the morphologies of anode layers after reduction. Energy
dispersive X-ray spectroscopy (EDS) analysis was used to examine
the possible element diffusion at the anode/electrolyte interface.
Symmetrical cells with Pt (Nilaco Co., Japan) and BZY-NiO (com-
mercial NiO was purchased from Wako) electrodes prepared by the
conventional mechanical mixing route in which BZY powder was
mixed with commercial NiO in a weight ratio of 1:1 by ball-milling
in ethanol for 24 h and then dried at 90°C overnight to evaporate the
ethanol were also fabricated and tested in the same conditions to
compare their performance with the BZY-NiO anodic powders
made by the combustion method.

Results and Discussion

Powder characterization— Figure 1 shows the XRD patterns of
the composite anodic powders with different BZY-NiO weight ratios
prepared by a combustion method, showing only the presence of
BZY and NiO phases. The difference in the weight ratio between
BZY and NiO just changed the relative intensity of the two phases in
the XRD patterns. It has been reported that a small amount of Ni can
be substituted in the BZY lattice and the doping can occur during the
mechanical mixing and high temperature firing process.*>* A small
amount of Ni may introduce some electronic conductivity in the BZY
samples®® and this electronic conductivity can be even beneficial to
promote the anode reaction. In addition, the Ni-modified BZY was
reported to show imgroved protonic conductivity according to
research of Tong et al.** Nonetheless, no obvious secondary phases
could be observed in the XRD patterns of BZY-NiO anodes after
firing, and the lattice parameter for BZY in the composite anodic
powders almost kept constant at around 4.215 A, in agreement with
the BZY lattice parameter reported in the literature [from 4.21 A
(Ref. 35) to 4.23 A (Ref. 36)], indicating that the NiO content in the
composite powders did not alter the lattice structure of BZY in the
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Figure 1. XRD patterns for composite powders with different BZY-NiO
weight ratio fired at 1100 °C for 6 h.

composite anodic powders. Figure 2 shows the XRD patterns for the
BZY-NiO anode pellets sintered at 1400°C for 6 h, indicating the
phase of these anodes remained unchanged during the high tempera-
ture firing, in spite of the formation of a small amount of
BaY,NiOs.303*

Figure 3 shows the back scattering electron (BSE) SEM micro-
graph of the BZY-NiO powder in the 20:80 weight ratio after
heating to 1100°C for 6 h, indicating clearly the presence of two dif-
ferent phases in the composite anode powders. The particle size of
NiO (dark particles) was about 500 nm and the particle size of BZY
(light particles) was about 50 nm. The same morphology was
observed for the other composite samples, with the only change of
the phase relative amounts.

Chemical stability— The problem of chemical stability is a
main challenge for proton conducting oxides. A previous report
demonstrated that the BaCeO3-NiO composite anode showed inad-
equate chemical stability against CO,. Doping with Zr has been
used to improve the chemical stability of BaCeOs-based materials;
after the work of Zuo et al."> who reported that 10% Zr doping in
BaCeO; (BaCe( 7Zr¢.1 Y0205 5, BCZY) improved its chemical sta-
bility, BCZY became the most used electrolyte material for proton-
conducting SOFCs as well as its counterpart anode.'*'> However,
several reports®®*73 showed that BCZY has insufficient chemical
stability in real fuel-cell conditions. In the present study, the chemi-
cal stability of two BZY-NiO compositions (BZY-NiO50 and BZY-
NiO60 anodic powders) was tested, together with that of BCZY-
NiO anodic powder in a 50:50 weight ratio, for sake of comparison.
Figure 4 shows the TG curves for BCZY-NiO, BZY-NiO50 and
BZY-NiO60 powders as a function of time and temperature, meas-
ured in pure CO,. The samples were heated from room temperature
to 700°C and held at 700°C for 3 h under pure CO, flowing. An
increase in weight for the BCZY-NiO powder was clearly observed,
ascribed to the reaction between BCZY and CO, during the test,”*’
leading to the formation of barium carbonate. On the contrary, the
weight of BZY-NiO50 and BZY-NiO60 did not increase, implying
that there was no reaction between BZY-NiO anode materials and
CO,. The slight weight decrease observed for both these anode com-
positions can be ascribed to sample dehydration.

XRD analysis further confirmed the conclusion that the BZY-
NiO powders did not react with CO, after the TG test in CO,
atmosphere. Figure 5 shows the XRD patterns of BCZY-NiO,
BZY-NiO50 and BZY-NiO60 powders before and after CO,

l . A R BZY;N|O4O

. BZY-NiO50

BZY-NiO60
N A A —
BZY-NiO70
| | J A A IA .
BZY-NiO80
[ .

20 30 40 50 60 70 80

Figure 2. XRD patterns for composite BZY-NiO anode pellets sintered at
1400°C for 6 h.
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Figure 3. Back scattering electron (BSE) image of typical BZY-NiO pow-
der in the weight ratio of 20:80 prepared by a combustion method after firing
at 1100 °C for 6 h.

exposure. The as-prepared BCZY-NiO sample consisted in BCZY
and NiO phases. After exposure to CO,, the XRD pattern shows that
the NiO reflection lines remained unchanged, suggesting no chemi-
cal degradation of the NiO phase, whereas large peaks of BaCOj;
and CeO, appeared with no BCZY peaks, indicating the complete
BCZY decomposition, in agreement with the TG measurements.
Instead, the XRD patterns of both BZY-NiO50 and BZY-NiO60
kept unchanged after CO, exposure, showing good chemical stabil-
ity for the BZY-NiO anode materials. These findings suggest that
the chemical stability of BCZY-NiO against CO, is insufficient for
fuel cell applications in operating conditions, despite its wide use in
the laboratory for proton-conducting SOFCs, while the BZY-NiO
composite anode shows excellent chemical stability and has a better
potential for fuel cell applications.

Electrochemical analysis— The electrochemical properties of
the BZY-NiO anodes were characterized in symmetrical cells using
an electrolyte pellet with an anode layer deposited on both sides.
Despite its insufficient chemical stability, BCZY was selected as
electrolyte for symmetrical cell testing for two reasons: to make a
comparison with other anodes reported in the relevant literature that
were studied with this same electrolyte, and to exploit the good
BCZY sintering activity that allows fabricating dense BCZY elec-
trolyte pellets (1 mm in thickness) during the co-firing with the an-
ode layers at 1400°C, whereas BaZrO; pellets were still porous.
Figure 6 shows the SEM fracture micrographs of anode/electrolyte
bi-layers after NiO reduction. BZY-Ni films with a thickness of
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Figure 4. (Color online) TG curves for BaCe 7Zr(1Y(,0;3_s (BCZY)-NiO,
BZY-NiO50 and BZY-NiO60 composite powders, measured in pure CO,
atmosphere.
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Figure 5. (Color online) XRD patterns for (a) BCZY-NiO powder, and (b)
BZY-NiO50, BZY-NiO60 powders before and after the TG test in pure CO,.

about 70 ym were obtained on dense BCZY electrolytes. The anode
layers attached well with the electrolyte and there was no cracking
or delamination after reduction. Figure 7 shows the high-magnifica-
tion SEM micrographs of the composite BZY-Ni anode layer,

(a) BZY-Ni40 (b) BZY-Ni50

Figure 6. SEM cross-sectional micrographs of the electrolyte/anode inter-
face for composite powders with different BZY-NiO weight ratio, after
reduction in hydrogen.
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Figure 7. High-magnification SEM cross-sectional micrographs of the com-
posite anode layer with different BZY-NiO weight ratio, after reduction in
hydrogen.

indicating that the anode layers were well reduced and presented a
porous structure. Figure 8 shows the SEM-EDS elemental analysis
of Ce and Zr in line-scan mode of the BZY-NiO anode film/BCZY
electrolyte interface after firing at 1400°C, performed to check the
possible Zr-Ce diffusion due to the Zr and Ce concentration gradient
between the two materials. The Ce signal is small in the anode and
increases in the BCZY electrolyte. The change in Ce concentration
in the BCZY electrolyte is not abrupt, but Ce concentration gradu-
ally increased from the interface into the electrolyte side, reaching a
constant value of Ce concentration at a thickness of about 10 ym. A
gradual Zr concentration decrease corresponded to the gradual Ce
concentration increase, showing the presence of a diffusion layer
about several micrometers in thickness. The inter-diffusion between
Zr and Ce was expected since many reports> 2° indicated that
BaCeO5; and BaZrO; can form solid solutions. Partial diffusion of
Zr from BZY-based anode to BCZY electrolyte can enhance its
chemical stability owing to the formation of an outer electrolyte
layer with larger Zr content than that of the original BCZY material
exposed to the anode side, having better chemical stability®>° and

Ce 2Zr

f 60pm

1 Electron Image 1

Figure 8. (Color online) SEM-EDS elemental analysis of Ce and Zr in line-
scan mode at the interface of the electrolyte and anode.
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Figure 9. (Color online) Complex-impedance plane plots for the symmetri-
cal cell with BZY-Ni50 anodes measured at different temperatures in a wet
20% H,-containing atmosphere.

may serve as a protective layer for the bulk electrolyte. Similar dif-
fusion results were also observed by Meulenberg et al.*®

Figure 9 shows the typical electrochemical impedance spectros-
copy (EIS) plots of the symmetrical cell with BZY-NiO50 anode,
measured from 400 to 700°C in wet 20% H, (~3% H,0). At very
low temperatures (such as 200°C), there were another two additional
semicircles at high frequencies, which were attributed to bulk and
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grain boundary contributions. With the increase of the temperatures,
the two arcs merged into one semicircle and finally led to a high fre-
quency resistance. The intercept with the real axis at high frequency
represents the ohmic resistance (Ropmic) Of the cell, which includes
the electrolyte and lead wire resistances. The low frequency inter-
cept corresponds to the total resistance of the cell. Therefore, the
difference between the high frequency and low frequency intercepts
with the real axis represents the polarization resistance (R;,) of the
cell. It can be seen that the R, values decreased with increasing the
temperature. The area specific resistance (ASR) of the anodes was
calculated from the electrode polarization resistance (R,) as
ASR = (R,A)/2, where A is the geometrical electrode area and the
factor i/z takes into consideration that symmetrical cells were
used. >4

Figure 10 shows the EIS plots of the BZY-Ni anodes with differ-
ent Ni content measured at 600°C in a wet 20% H, (~3% H,0)
atmosphere. The insets display the temperature dependence of ASR
values for these BZY-Ni anodes. At 600°C, ASR values of 0.61,
0.37, 0.43, 0.62 and 0.63 Q cm? were obtained for the BZY-Ni40,
BZY-Ni50, BZY-Ni60, BZY-Ni70 and BZY-Ni80 composite ano-
des, respectively. The ASR values decreased dramatically for each

11.0 115 12.0

Z'(@em?)

specimen with increasing the measuring temperature. As shown in
Fig. 11, the BZY-Ni50 anode showed the best electrochemical per-
formance in the whole testing temperature range, indicating that the
best weight composition for BZY and NiO is 50:50. The perform-
ance of the BZY-NiO50 anode prepared by the combustion method
was also better than that of Pt as well as that of the BZY-NiO anode
conventionally prepared by a mechanical mixing route, as shown in
Fig. 12. Figure 12a shows that the ASR values measured for Pt elec-
trode in the whole temperature range was much larger than that of
the BZY-Ni50 anode, indicating that Pt might not be a good choice
as the anode for barium zirconate electrolytes, in agreement with the
literature.>>?* Figure 12b shows the ASR values of BZY-Ni50 ano-
des prepared by the combustion method and the mechanical mixing
route. The anode prepared by the combustion method showed
smaller ASR values than those measured for the anode prepared by
the conventional mechanical mixing procedure, though having the
same composition. The smaller difference at low temperatures may
result from the better sintering activity for the combustion BZY-
Ni50 anode that led to a smaller porosity compared with that of the
conventional anode. The better performance for the anode prepared
by the combustion method is due to a better microstructure made by
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the one-step combustion method, with a more uniform distribution
of BZY and Ni particles as well as smaller Ni particle size, which is
illustrated in Fig. 13 that shows a SEM micrograph of the two ano-
des. A homogeneous distribution of small particles in the BZY-Ni
anode prepared by the combustion method effectively enlarged the
length of the triple-phase boundary (TPB) and thus led to a smaller
electrode polarization resistance.

The BZY-Ni50 anode prepared by combustion showed a better
electrochemical performance than that of most of the proton con-
ductor-based anodes for proton-conducting SOFCs reported in the
literature.'®2° However, better performance was reported for an
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Figure 12. (Color online) Comparison of ASR values of (a) BZY-Ni50 com-
bustion anode and Pt anode, and (b) BZY-Ni50 anodes prepared by the com-
bustion method and by the mechanical mixing route.

NiO content (%)

anode made of Ni and BaCepoY(05_5 (BCY) nanopowders,lg
which might have problems of chemical stability in fuel cell appli-
cations. The activation energy of the BZY-Ni50 anode was 0.53 eV,
slightly larger than that of cerate proton conductor based anodes
[such as BaCe( Y105 _5-Ni with the activation energy of 0.32eV
(Ref. 20) and SrCen9Ybg O5_5-Ni with the activation energy of
0.4eV (Ref. 18)], in agreement with the slightly larger activation
energy of doped-BaZrO; with respect to doped BaCeO5.%

Figures 9 and 10 clearly show the presence of two depressed
semi-circles in each EIS plot, indicating two different electrochemi-
cal mechanisms. A thorough analysis of the EIS data was performed
to unravel the possible electrochemical reactions occurring at the
anode and affecting the ASR. The equivalent circuit used to fit the
impedance spectra was made of a resistance and an inductance asso-
ciated in series with two distributed elements, composed by a con-
stant phase element in parallel with a resistance. Similar circuits
have been widely used previously for SOFC anode studies.*> The
ASR is the sum of the contributions of the resistance calculated
from the semicircle at the high frequency (ASRyx) and the resist-
ance calculated from the semicircle at the low frequency (ASR; ).
With increasing the temperature, the diameter of both semi-circles
gradually decreased and the high frequency semi-circle tended to
disappear at high temperatures (above 600°C). Therefore, we sepa-
rated the contribution of ASRy;~ and ASR; - obtained from the EIS
plots for BZY-NiO anodes with different BZY-NiO weight ratios in
the 400—600°C temperature range (Fig. 14). The ASRy, activation
energy for the BZY-Ni anodes was between 0.44 and 0.65 eV.
These activation energy values were within the range of values
reported in the literature for proton conduction in oxides,'****
suggesting that protons are involved in the electrochemical reac-
tions. Moreover, the semi-circle at high frequency showed a capaci-
tance value in the order of 107> F em ™2, which is usually associated
to charge transfer processes at the electrode/electrolyte inter-
face.*'*> Therefore, the ASRy was ascribed to proton migration at
the anode/electrolyte interface. The semi-circles at low frequency,
related to ASR; -, showed capacitance values in the order of 103F
cm ™2 The larger capacitance compared with that at high frequency
is usually associated with surface reactions. %42 Therefore, it is rea-
sonable to assume that the ASR;; for the anode is related to the

BZY-Ni prepared by the
conventional mechanical
mixingroute

BZY-Niprepared by the
combustion method

Figure 13. (Color online) SEM micrograph for BZY-Ni anodes prepared by
the combustion method and conventional mechanical mixing route, with a
schematic diagram of particle distribution.
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Figure 14. (Color online) (a) ASRyr and (b) ASR,r temperature depend-
ence for composite anodes with different NiO weight contents in a wet 20%
H,-containing atmosphere.

dissociative adsorption of the fuel gas at the anode side, herein H,.
The reaction can be written as

Hy(g) — 2H,q Step 1 (1)
Hy,—e — H;d Step 2 )

Although the anode containing 50 wt % BZY and 50 wt % NiO also
shows the lowest ASR; - values in the testing temperature range, the
value of ASR; is obviously larger than that of the ASRy at the
same temperature and the same trend was observed for the other
compositions. The similar phenomenon of large ASR;r was
observed for the literature reported BCY-NiO anode.”® The larger
ASR, - with respect to ASRy suggests that the dissociative adsorp-
tion of H, is the rate limiting step for the composite BZY-NiO
anode.

Conclusions

A combustion method was used to prepare BZY-NiO anodic
powders with different BZY-NiO weight ratios for proton conduct-
ing SOFCs. Compared with the most utilized BaCeOj-based
composite anodic powder, BZY-NiO showed comparable electro-
chemical performance but much improved chemical stability, and
has potential for application in practical fuel cell operating condi-
tions. ASR values obtained from symmetrical cell measurements
indicated that the optimized composition between BZY and NiO for
the combustion anode is 50:50, which showed the lowest polariza-
tion resistance among all the compositions. EIS analysis suggested
that there were two different electrochemical mechanisms occurring
at the anode, being dissociative adsorption of H, the rate limiting

step. In addition, the BZY-NiO50 anode in the present study also
showed lower polarization resistance than most of the proton con-
ductor-NiO composite anodes previously reported and possessed
much better chemical stability. The desirable electrochemical per-
formance and excellent chemical stability make the BZY-NiO
anodes prepared by the combustion method promising for proton-
conducting SOFCs.
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