8 research outputs found

    Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    Get PDF
    BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.National Council for Scientific and Technological Development (CNPq), Brasilia, Brazi

    Seasonal dynamics of Aedes aegypti (Diptera: Culicidae) in the northernmost state of Brazil: a likely port-of-entry for dengue virus 4

    No full text
    Roraima is the northernmost state of Brazil, bordering both Venezuela and Guyana. Appropriate climate and vector conditions for dengue transmission together with its proximity to countries where all four dengue serotypes circulate make this state, particularly the capital Boa Vista, strategically important for dengue surveillance in Brazil. Nonetheless, few studies have addressed the population dynamics of Aedes aegypti in Boa Vista. In this study, we report temporal and spatial variations in Ae. aegypti population density using ovitraps in two highly populated neighbourhoods; Centro and Tancredo Neves. In three out of six surveys, Ae. aegypti was present in more than 80% of the sites visited. High presence levels of this mosquito suggest ubiquitous human exposure to the vector, at least during part of the year. The highest infestation rates occurred during the peak of the rainy seasons, but a large presence was also observed during the early dry season (although with more variation among years). Spatial distribution of positive houses changed from a sparse and local pattern to a very dense pattern during the dry-wet season transition. These results suggest that the risk of dengue transmission and the potential for the new serotype invasions are high for most of the year

    Persistence of experimental Rocio virus infection in the golden hamster (Mesocricetus auratus)

    No full text
    Rocio virus (ROCV) is an encephalitic flavivirus endemic to Brazil. Experimental flavivirus infections have previously demonstrated a persistent infection and, in this study, we investigated the persistence of ROCV infection in golden hamsters (Mesocricetus auratus). The hamsters were infected intraperitoneally with 9.8 LD50/0.02 mL of ROCV and later anaesthetised and sacrificed at various time points over a 120-day period to collect of blood, urine and organ samples. The viral titres were quantified by real-time-polymerase chain reaction (qRT-PCR). The specimens were used to infect Vero cells and ROCV antigens in the cells were detected by immunefluorescence assay. The levels of antibodies were determined by the haemagglutination inhibition technique. A histopathological examination was performed on the tissues by staining with haematoxylin-eosin and detecting viral antigens by immunohistochemistry (IHC). ROCV induced a strong immune response and was pathogenic in hamsters through neuroinvasion. ROCV was recovered from Vero cells exposed to samples from the viscera, brain, blood, serum and urine and was detected by qRT-PCR in the brain, liver and blood for three months after infection. ROCV induced histopathological changes and the expression of viral antigens, which were detected by IHC in the liver, kidney, lung and brain up to four months after infection. These findings show that ROCV is pathogenic to golden hamsters and has the capacity to cause persistent infection in animals after intraperitoneal infection
    corecore