41 research outputs found
Phosphine Functionalization of GaAs(111)A Surfaces
Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Ga surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity
On the role of theory and modeling in neuroscience
In recent years, the field of neuroscience has gone through rapid
experimental advances and extensive use of quantitative and computational
methods. This accelerating growth has created a need for methodological
analysis of the role of theory and the modeling approaches currently used in
this field. Toward that end, we start from the general view that the primary
role of science is to solve empirical problems, and that it does so by
developing theories that can account for phenomena within their domain of
application. We propose a commonly-used set of terms - descriptive,
mechanistic, and normative - as methodological designations that refer to the
kind of problem a theory is intended to solve. Further, we find that models of
each kind play distinct roles in defining and bridging the multiple levels of
abstraction necessary to account for any neuroscientific phenomenon. We then
discuss how models play an important role to connect theory and experiment, and
note the importance of well-defined translation functions between them.
Furthermore, we describe how models themselves can be used as a form of
experiment to test and develop theories. This report is the summary of a
discussion initiated at the conference Present and Future Theoretical
Frameworks in Neuroscience, which we hope will contribute to a much-needed
discussion in the neuroscientific community
The impact of a school-based hygiene, water quality and sanitation intervention on soil-transmitted helminth reinfection: a cluster-randomized trial.
We conducted a cluster-randomized trial to assess the impact of a school-based water treatment, hygiene, and sanitation program on reducing infection with soil-transmitted helminths (STHs) after school-based deworming. We assessed infection with STHs at baseline and then at two follow-up rounds 8 and 10 months after deworming. Forty government primary schools in Nyanza Province, Kenya were randomly selected and assigned to intervention or control arms. The intervention reduced reinfection prevalence (odds ratio [OR] 0.56, 95% confidence interval [CI] 0.31-1.00) and egg count (rate ratio [RR] 0.34, CI 0.15-0.75) of Ascaris lumbricoides. We found no evidence of significant intervention effects on the overall prevalence and intensity of Trichuris trichiura, hookworm, or Schistosoma mansoni reinfection. Provision of school-based sanitation, water quality, and hygiene improvements may reduce reinfection of STHs after school-based deworming, but the magnitude of the effects may be sex- and helminth species-specific
SIV Nef Proteins Recruit the AP-2 Complex to Antagonize Tetherin and Facilitate Virion Release
Lentiviral Nef proteins have multiple functions and are important for viral pathogenesis. Recently, Nef proteins from many simian immunodefiency viruses were shown to antagonize a cellular antiviral protein, named Tetherin, that blocks release of viral particles from the cell surface. However, the mechanism by which Nef antagonizes Tetherin is unknown. Here, using related Nef proteins that differ in their ability to antagonize Tetherin, we identify three amino-acids in the C-terminal domain of Nef that are critical specifically for its ability to antagonize Tetherin. Additionally, divergent Nef proteins bind to the AP-2 clathrin adaptor complex, and we show that residues important for this interaction are required for Tetherin antagonism, downregulation of Tetherin from the cell surface and removal of Tetherin from sites of particle assembly. Accordingly, depletion of AP-2 using RNA interference impairs the ability of Nef to antagonize Tetherin, demonstrating that AP-2 recruitment is required for Nef proteins to counteract this antiviral protein
Gastrointestinal decontamination in the acutely poisoned patient
ObjectiveTo define the role of gastrointestinal (GI) decontamination of the poisoned patient.Data sourcesA computer-based PubMed/MEDLINE search of the literature on GI decontamination in the poisoned patient with cross referencing of sources.Study selection and data extractionClinical, animal and in vitro studies were reviewed for clinical relevance to GI decontamination of the poisoned patient.Data synthesisThe literature suggests that previously, widely used, aggressive approaches including the use of ipecac syrup, gastric lavage, and cathartics are now rarely recommended. Whole bowel irrigation is still often recommended for slow-release drugs, metals, and patients who "pack" or "stuff" foreign bodies filled with drugs of abuse, but with little quality data to support it. Activated charcoal (AC), single or multiple doses, was also a previous mainstay of GI decontamination, but the utility of AC is now recognized to be limited and more time dependent than previously practiced. These recommendations have resulted in several treatment guidelines that are mostly based on retrospective analysis, animal studies or small case series, and rarely based on randomized clinical trials.ConclusionsThe current literature supports limited use of GI decontamination of the poisoned patient