6 research outputs found

    The MU-RAY project: Volcano radiography with cosmic-ray muons

    Get PDF
    Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two X–Y planes of 2x2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip.Published120-1231.4. TTC - Sorveglianza sismologica delle aree vulcaniche attiveJCR Journalrestricte

    The Trigger System of the ICARUS Experiment

    No full text
    This paper presents the hardware architecture and the main features of the ICARUS trigger system. The ICARUS detector is a very massive liquid Argon Time Projection Chamber aimed at the study of some of the fundamental issues of astroparticle physics such as solar and atmospheric neutrino interactions, neutrinos following a Supernova explosion, neutrino oscillations with beams from particle accelerators and nucleon decay as predicted by Grand Unification Theories. The main feature of the proposed trigger design is its "segmentation," i.e:, the capability to trigger different sectors of the detector on different events allowing for the efficient detection of rare events

    The MU-RAY project: Volcano radiography with cosmic-ray muons

    No full text
    Cosmic-ray muon radiography is a technique for imaging the variation of density inside the top few 100m of a volcanic cone. With resolutions up to 10s of meters in optimal detection conditions, muon radiography can provide images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with conventional methods. Such precise measurements are expected to provide us with information on anomalies in the rock density distribution, like those expected from dense lava conduits, low density magma supply paths or the compression with depth of the overlying soil. The MU-RAY project aims at the construction of muon telescopes and the development of new analysis tools for muon radiography. The telescopes are required to be able to work in harsh environment and to have low power consumption, good angular and time resolutions, large active area and modularity. The telescope consists of two X–Y planes of 2x2 square meters area made by plastic scintillator strips of triangular shape. Each strip is read by a fast WLS fiber coupled to a silicon photomultiplier. The readout electronics is based on the SPIROC chip

    Construction and test of the SM1 type Micromegas chambers for the upgrade of the ATLAS forward muon spectrometer

    No full text
    Large-size Resistive Micromegas have been chosen for the upgrade of the forward muon spectrometer of the ATLAS experiment, the New Small Wheel project. These chambers, together with small-strip Thin Gap Chambers (sTGC), allow reconstruction of high-momentum muon tracks in a high-radiation environment and provide a robust low-threshold single-muon trigger. A collaboration of seven INFN units built 32 SM1 type chambers, corresponding to one fourth of the total number needed for this upgrade. Each SM1 chamber has a surface of approximately 2 m(2) and four sensitive layers. The production was shared among five INFN construction sites and it was completed in fall 2020. The construction methods, as well as the results of the quality tests done on components of the detector and on the assembled chambers, are reported in the present paper

    Construction and test of the SM1 type Micromegas chambers for the upgrade of the ATLAS forward muon spectrometer

    No full text
    Large-size Resistive Micromegas have been chosen for the upgrade of the forward muon spectrometer of the ATLAS experiment, the New Small Wheel project. These chambers, together with small-strip Thin Gap Chambers (sTGC), allow reconstruction of high-momentum muon tracks in a high-radiation environment and provide a robust low-threshold single-muon trigger. A collaboration of seven INFN units built 32 SM1 type chambers, corresponding to one fourth of the total number needed for this upgrade. Each SM1 chamber has a surface of approximately 2 m2 and four sensitive layers. The production was shared among five INFN construction sites and it was completed in fall 2020. The construction methods, as well as the results of the quality tests done on components of the detector and on the assembled chambers, are reported in the present paper

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    No full text
    Abstract The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of  ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of  ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector.</jats:p
    corecore