2,586 research outputs found
Non-self-adjoint resolutions of the identity and associated operators
Closed operators in Hilbert space defined by a non-self-adjoint resolution of
the identity \{X(\lambda)\}_{\lambda\in {\mb R}}, whose adjoints constitute
also a resolution of the identity, are studied . In particular, it is shown
that a closed operator has a spectral representation analogous to the
familiar one for self-adjoint operators if and only if where
is self-adjoint and is a bounded operator with bounded inverse
Non-divisibility vs backflow of information in understanding revivals of quantum correlations for continuous-variable systems interacting with fluctuating environments
We address the dynamics of quantum correlations for a bipartite
continuous-variable quantum system interacting with its fluctuating
environment. In particular, we consider two independent quantum oscillators
initially prepared in a Gaussian state, e.g. a squeezed thermal state, and
compare the dynamics resulting from local noise, i.e. oscillators coupled to
two independent external fields, to that originating from common noise, i.e.
oscillators interacting with a single common field. We prove non-Markovianity
(non-divisibility) of the dynamics in both regimes and analyze the connections
between non-divisibility, backflow of information and revivals of quantum
correlations. Our main results may be summarized as follows: (i) revivals of
quantumness are present in both scenarios, however, the interaction with a
common environment better preserves the quantum features of the system; (ii)
the dynamics is always non-divisible but revivals of quantum correlations are
present only when backflow of information is present as well. We conclude that
non-divisibility in its own is not a resource to preserve quantum correlations
in our system, i.e. it is not sufficient to observe recoherence phenomena.
Rather, it represents a necessary prerequisite to obtain backflow of
information, which is the true ingredient to obtain revivals of quantumness
Entanglement as a resource for discrimination of classical environments
We address extended systems interacting with classical fluctuating
environments and analyze the use of quantum probes to discriminate local noise,
described by independent fluctuating fields, from common noise, corresponding
to the interaction with a common one. In particular, we consider a bipartite
system made of two non interacting harmonic oscillators and assess
discrimination strategies based on homodyne detection, comparing their
performances with the ultimate bounds on the error probabilities of
quantum-limited measurements. We analyze in details the use of Gaussian probes,
with emphasis on experimentally friendly signals. Our results show that a joint
measurement of the position-quadrature on the two oscillators outperforms any
other homodyne-based scheme for any input Gaussian state
Cross-spectral analysis of the X-ray variability of Mrk 421
Using the cross-spectral method, we confirm the existence of the X-ray hard
lags discovered with cross-correlation function technique during a large flare
of Mrk 421 observed with BeppoSAX . For the 0.1--2 versus 2--10keV light
curves, both methods suggest sub-hour hard lags. In the time domain, the degree
of hard lag, i.e., the amplitude of the 3.2--10 keV photons lagging the lower
energy ones, tends to increase with the decreasing energy. In the Fourier
frequency domain, by investigating the cross-spectra of the 0.1--2/2--10 keV
and the 2--3.2/3.2--10 keV pairs of light curves, the flare also shows hard
lags at the lowest frequencies. However, with the present data, it is
impossible to constrain the dependence of the lags on frequencies even though
the detailed simulations demonstrate that the hard lags at the lowest
frequencies probed by the flare are not an artifact of sparse sampling, Poisson
and red noise. As a possible interpretation, the implication of the hard lags
is discussed in the context of the interplay between the (diffusive)
acceleration and synchrotron cooling of relativistic electrons responsible for
the observed X-ray emission. The energy-dependent hard lags are in agreement
with the expectation of an energy-dependent acceleration timescale. The
inferred magnetic field (B ~ 0.11 Gauss) is consistent with the value inferred
from the Spectral Energy Distributions of the source. Future investigations
with higher quality data that whether or not the time lags are
energy-/frequency-dependent will provide a new constraint on the current models
of the TeV blazars.Comment: 11 pages, 6 figures, accepted by MNRA
Experimental observation of the X-shaped near field spatio-temporal correlation of ultra-broadband twin beams
In this work we present the experimental observation of the non factorable
near field spatio-temporal correlation of ultra-broadband twin beams generated
by parametric down conversion (PDC), in an interferometric-type experiment
using sum frequency generation, where both the temporal and spatial degrees of
freedom of PDC light are controlled with very high resolution. The revealed
X-structure of the correlation is in accordance with the predictions of the
theory.Comment: 5 pages, 3 figure
The dual adverse effects of TGF-β secretion on tumor progression
SummaryWhen a cancer escapes the growth-inhibitory effects of TGF-β secreted by cancer cells themselves or by cells in the local stroma, a further adverse outcome for the host is the associated TGF-β-induced suppression of anticancer T cell immunity. In addition to the previously described dampening of T cell activation and proliferation, TGF-β markedly and directly suppresses the transcription of genes encoding multiple key proteins of the âcytotoxic programâ of CD8+ CTL, such as perforin and granzymes, cytotoxins that act through the granule exocytosis pathway. The findings described below suggest that TGF-β and its signaling pathways will be major targets for novel cancer therapeutics
Granzymes: a family of lymphocyte granule serine proteases
Granzymes, a family of serine proteases, are expressed exclusively by cytotoxic T lymphocytes and natural killer (NK) cells, components of the immune system that protect higher organisms against viral infection and cellular transformation. Following receptor-mediated conjugate formation between a granzyme-containing cell and an infected or transformed target cell, granzymes enter the target cell via endocytosis and induce apoptosis. Granzyme B is the most powerful pro-apoptotic member of the granzyme family. Like caspases, cysteine proteases that play an important role in apoptosis, it can cleave proteins after acidic residues, especially aspartic acid. Other granzymes may serve additional functions, and some may not induce apoptosis. Granzymes have been well characterized only in human and rodents, and can be grouped into three subfamilies according to substrate specificity: members of the granzyme family that have enzymatic activity similar to the serine protease chymotrypsin are encoded by a gene cluster termed the 'chymase locus'; granzymes with trypsin-like specificities are encoded by the 'tryptase locus'; and a third subfamily cleaves after unbranched hydrophobic residues, especially methionine, and is encoded by the 'Met-ase locus'. All granzymes are synthesized as zymogens and, after clipping of the leader peptide, maximal enzymatic activity is achieved by removal of an amino-terminal dipeptide. They can all be blocked by serine protease inhibitors, and a new group of inhibitors has recently been identified - serpins, some of which are specific for granzymes. Future studies of serpins may bring insights into how cells that synthesize granzymes are protected from inadvertent cell suicide
- âŚ