15 research outputs found

    Efficacy of Artesunate + Sulfamethoxypyrazine/Pyrimethamine versus Praziquantel in the Treatment of Schistosoma haematobium in Children

    Get PDF
    BACKGROUND:This study was conducted to determine the efficacy of the antimalarial artemisinin-based combination therapy (ACT) artesunate +sulfamethoxypyrazine/pyrimethamine (As+SMP), administered in doses used for malaria, to treat Schistosoma haematobium in school aged children. METHODOLOGY/PRINCIPAL FINDINGS:The study was conducted in Djalakorodji, a peri-urban area of Bamako, Mali, using a double blind setup in which As+SMP was compared with praziquantel (PZQ). Urine samples were examined for Schistosoma haematobium on days -1, 0, 28 and 29. Detection of haematuria, and haematological and biochemical exams were conducted on day 0 and day 28. Clinical exams were performed on days 0, 1, 2, and 28. A total of 800 children were included in the trial. The cure rate obtained without viability testing was 43.9% in the As+SMP group versus 53% in the PZQ group (Chi(2) = 6.44, p = 0.011). Egg reduction rates were 95.6% with PZQ in comparison with 92.8% with As+SMP, p = 0.096. The proportion of participants who experienced adverse events related to the medication was 0.5% (2/400) in As+SMP treated children compared to 2.3% (9/399) in the PZQ group (p = 0.033). Abdominal pain and vomiting were the most frequent adverse events in both treatment arms. All adverse events were categorized as mild. CONCLUSIONS/SIGNIFICANCE:The study demonstrates that PZQ was more effective than As+SMP for treating Schistosoma haematobium. However, the safety and tolerability profile of As+SMP was similar to that seen with PZQ. Our findings suggest that further investigations seem justifiable to determine the dose/efficacy/safety pattern of As+SMP in the treatment of Schistosoma infections. TRIAL REGISTRATION:ClinicalTrials.gov NCT00510159

    Ecological and genetic relationships of the Forest-M form among chromosomal and molecular forms of the malaria vector Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles gambiae sensu stricto</it>, one of the principal vectors of malaria, has been divided into two subspecific groups, known as the M and S molecular forms. Recent studies suggest that the M form found in Cameroon is genetically distinct from the M form found in Mali and elsewhere in West Africa, suggesting further subdivision within that form.</p> <p>Methods</p> <p>Chromosomal, microsatellite and geographic/ecological evidence are synthesized to identify sources of genetic polymorphism among chromosomal and molecular forms of the malaria vector <it>Anopheles gambiae s.s</it>.</p> <p>Results</p> <p>Cytogenetically the Forest M form is characterized as carrying the standard chromosome arrangement for six major chromosomal inversions, namely 2La, 2Rj, 2Rb, 2Rc, 2Rd, and 2Ru. Bayesian clustering analysis based on molecular form and chromosome inversion polymorphisms as well as microsatellites describe the Forest M form as a distinct population relative to the West African M form (Mopti-M form) and the S form. The Forest-M form was the most highly diverged of the <it>An. gambiae s.s</it>. groups based on microsatellite markers. The prevalence of the Forest M form was highly correlated with precipitation, suggesting that this form prefers much wetter environments than the Mopti-M form.</p> <p>Conclusion</p> <p>Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of <it>An. gambiae </it>is genetically distinct from the other recognized forms within the taxon <it>Anopheles gambiae sensu stricto</it>. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure.</p

    Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali

    Get PDF
    BACKGROUND: Anopheles gambiae sensu stricto (s.s.) is a primary vector of Plasmodium falciparum in sub-Saharan Africa. Although some physiological differences among molecular and chromosomal forms of this species have been demonstrated, the relative susceptibility to malaria parasite infection among them has not been unequivocally shown. The objective of this study was to investigate P. falciparum circumsporozoite protein infection (CSP) positivity among An. gambiae s.s. chromosomal and molecular forms. METHODS: Wild An. gambiae from two sites Kela (n = 464) and Sidarebougou (n = 266) in Mali were screened for the presence of P. falciparum CSP using an enzyme-linked immunosorbent assay (ELISA). Samples were then identified to molecular form using multiple PCR diagnostics (n = 713) and chromosomal form using chromosomal karyotyping (n = 419). RESULTS: Of 730 An. gambiae sensu lato (s.l.) mosquitoes, 89 (12.2%) were CSP ELISA positive. The percentage of positive mosquitoes varied by site: 52 (11.2%) in Kela and 37 (13.9%) in Sidarebougou. Eighty-seven of the positive mosquitoes were identified to molecular form and they consisted of nine Anopheles arabiensis (21.4%), 46 S (10.9%), 31 M (12.8%), and one MS hybrid (14.3%). Sixty of the positive mosquitoes were identified to chromosomal form and they consisted of five An. arabiensis (20.0%), 21 Savanna (15.1%), 21 Mopti (30.4%), 11 Bamako (9.2%), and two hybrids (20.0%). DISCUSSION: In this collection, the prevalence of P. falciparum infection in the M form was equivalent to infection in the S form (no molecular form differential infection). There was a significant differential infection by chromosomal form such that, P. falciparum infection was more prevalent in the Mopti chromosomal forms than in the Bamako or Savanna forms; the Mopti form was also the most underrepresented in the collection. Continued research on the differential P. falciparum infection of An. gambiae s.s. chromosomal and molecular forms may suggest that Plasmodium – An. gambiae interactions play a role in malaria transmission

    E-Health, another mechanism to recruit and retain healthcare professionals in remote areas: lessons learned from EQUI-ResHuS project in Mali

    Get PDF
    The aim of this study was to evaluate the perceived influence of telehealth on recruitment and retention of healthcare professionals in remote areas in Mali

    PCR-based karyotyping of Anopheles gambiae inversion 2Rj identifies the BAMAKO chromosomal form.

    Get PDF
    BACKGROUND: The malaria vector Anopheles gambiae is polymorphic for chromosomal inversions on the right arm of chromosome 2 that segregate nonrandomly between assortatively mating populations in West Africa. One such inversion, 2Rj, is associated with the BAMAKO chromosomal form endemic to southern Mali and northern Guinea Conakry near the Niger River. Although it exploits a unique ecology and both molecular and chromosomal data suggest reduced gene flow between BAMAKO and other A. gambiae populations, no molecular markers exist to identify this form. METHODS: To facilitate study of the BAMAKO form, a PCR assay for molecular karyotyping of 2Rj was developed based on sequences at the breakpoint junctions. The assay was extensively validated using more than 700 field specimens whose karyotypes were determined in parallel by cytogenetic and molecular methods. As inversion 2Rj also occurs in SAVANNA populations outside the geographic range of BAMAKO, samples were tested from Senegal, Cameroon and western Guinea Conakry as well as from Mali. RESULTS: In southern Mali, where 2Rj polymorphism in SAVANNA populations was very low and most of the 2Rj homozygotes were found in BAMAKO karyotypes, the molecular and cytogenetic methods were almost perfectly congruent. Elsewhere agreement between the methods was much poorer, as the molecular assay frequently misclassified 2Rj heterozygotes as 2R+j standard homozygotes. CONCLUSION: Molecular karyotyping of 2Rj is robust and accurate on 2R+j standard and 2Rj inverted homozygotes. Therefore, the proposed approach overcomes the lack of a rapid tool for identifying the BAMAKO form across developmental stages and sexes, and opens new perspectives for the study of BAMAKO ecology and behaviour. On the other hand, the method should not be applied for molecular karyotyping of j-carriers within the SAVANNA chromosomal form

    Medical and economic benefits of telehealth in low- and middle-income countries: results of a study in four district hospitals in Mali

    Get PDF
    The aim of this study was to evaluate the impact of telehealth on 1) the diagnosis, and management in obstetrics and cardiology, 2) health care costs from patients' perspectives, 3) attendance at health centres located in remote areas of Mali

    Co-infection of long-term carriers of Plasmodium falciparum with Schistosoma haematobium enhances protection from febrile malaria: a prospective cohort study in Mali.

    No full text
    Malaria and schistosomiasis often overlap in tropical and subtropical countries and impose tremendous disease burdens; however, the extent to which schistosomiasis modifies the risk of febrile malaria remains unclear.We evaluated the effect of baseline S. haematobium mono-infection, baseline P. falciparum mono-infection, and co-infection with both parasites on the risk of febrile malaria in a prospective cohort study of 616 children and adults living in Kalifabougou, Mali. Individuals with S. haematobium were treated with praziquantel within 6 weeks of enrollment. Malaria episodes were detected by weekly physical examination and self-referral for 7 months. The primary outcome was time to first or only malaria episode defined as fever (≥ 37.5 °C) and parasitemia (≥ 2500 asexual parasites/µl). Secondary definitions of malaria using different parasite densities were also explored.After adjusting for age, anemia status, sickle cell trait, distance from home to river, residence within a cluster of high S. haematobium transmission, and housing type, baseline P. falciparum mono-infection (n = 254) and co-infection (n = 39) were significantly associated with protection from febrile malaria by Cox regression (hazard ratios 0.71 and 0.44; P = 0.01 and 0.02; reference group: uninfected at baseline). Baseline S. haematobium mono-infection (n = 23) did not associate with malaria protection in the adjusted analysis, but this may be due to lack of statistical power. Anemia significantly interacted with co-infection (P = 0.009), and the malaria-protective effect of co-infection was strongest in non-anemic individuals. Co-infection was an independent negative predictor of lower parasite density at the first febrile malaria episode.Co-infection with S. haematobium and P. falciparum is significantly associated with reduced risk of febrile malaria in long-term asymptomatic carriers of P. falciparum. Future studies are needed to determine whether co-infection induces immunomodulatory mechanisms that protect against febrile malaria or whether genetic, behavioral, or environmental factors not accounted for here explain these findings

    Kaplan-Meier plots of risk of <i>P. falciparum</i> infection or febrile malaria.

    No full text
    <p>A) Time to first PCR-confirmed <i>P. falciparum</i> blood-stage infection by <i>S. haematobium</i> (Sh) infection status at enrollment. Data shown is only for individuals who were PCR-negative for <i>P. falciparum</i> at enrollment. B) Time to first febrile malaria episode (defined as fever of ≥37.5°C and asexual parasite density ≥2500 parasites/µl on blood smear) by <i>P. falciparum</i> (Pf) and <i>S. haematobium</i> (Sh) infection status at enrollment. C) Time to first febrile malaria episode by <i>S. haematobium</i> (Sh) infection status and anemia status at enrollment. (−) negative status; (+) positive status. <i>P</i> values for log-rank analyses (all groups) are shown. Blue shading indicates time period during which praziquantel was given to all individuals who were determined to be infected with <i>S. haematobium</i> at enrollment.</p
    corecore