23 research outputs found

    A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken

    Get PDF
    Author summaryVertebrates possess two types of melanin, red/yellow pheomelanin and black/brown eumelanin. In this study, we report that the recessive Inhibitor of gold phenotype in chicken, which causes a severe defect in pheomelanin pigmentation, is associated with a mutation that most likely inactivates the COMTD1 gene. This gene encodes an O-methyltransferase enzyme and is present throughout vertebrate evolution, but is one of the many genes in vertebrate genomes for which the biological function is still poorly understood. This is the first report of a COMTD1 mutation associated with a phenotypic effect. We show that the COMTD1 protein is present in mitochondria in pigment cells. Furthermore, inactivation of the gene in a mouse pigment cell line results in a significant reduction in metabolites that are important for the synthesis of pheomelanin. We hypothesize that COMTD1 activity protects pigment cells from oxidative stress and that inactivation of this function impairs the production of pheomelanin. It is likely that COMTD1 has a similar function in other cell types. This study establishes this chicken mutation as a model for further studies of COMTD1 function.The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5(th) exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin

    A frame-shift mutation in COMTD1 is associated with impaired pheomelanin pigmentation in chicken.

    No full text
    The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin

    Chemical characterization of feather melanin.

    No full text
    (A) depicts levels of total melanin in wild-type birds (R+ and R-) and in IG birds analyzed by Soluene-350 solubilization. (B) depicts A650/A500 ratios analyzed by Soluene-350 solubilization. (C) depicts eumelanin (EM), benzothiazine-pheomelanin (BT-PM), and benzothiazole-pheomelanin (BZ-PM) analyzed as PTCA, 4-AHP, and TTCA, respectively. Feather samples were obtained from neck regions from 3 males and 3 females. Results are shown with the means ± SEM of 6 birds. *** and ** indicate P P = 0.0001–0.01 between R- and IG birds and between R- and R+ birds (Student’s t test).</p

    Metabolomics analysis of <i>Comtd1</i>-KO and wild-type B16F10 cells.

    No full text
    Principal component analysis (PCA) and Partial Least-Squares Discriminant Analysis (PLS-DA) with model validation results. PCA is an unsupervised multivariate analysis, which provides an unbiased overview of the metabolite features due to unawareness of the two groups compared (WT and KO in this case). PLS-DA is a multivariate analysis which considers data from the two groups and select the most discriminating metabolites that separates the two groups. This is the reason why PLS-DA show a better separation between WT and KO groups. (A) PCA in MS positive mode detection. (B) PLS-DA in MS positive mode detection. (C) PCA in MS negative mode detection. (D) PLS-DA in MS negative mode detection. (E) Significantly altered pathways impacted by Comtd1 knockout. (PDF)</p

    Illustration of plumage phenotypes associated with different genotypes at the <i>Inhibitor of gold</i> locus in chicken on different genetic backgrounds.

    No full text
    The birds in (A) and (B) carry the bottom recessive wheaten allele (e) at the MC1R locus and shows red pheomelanin-based pigmentation. The birds in (C) and (D) carry the brown allele (eb) at the same locus that allows expression of both eumelanin and pheomelanin and IG dilution is apparent as regards pheomelanin pigmentation. (A) and (B) depict F2 birds from the mapping pedigree with the wild-type phenotype or the recessive IG phenotype (IG/IG), respectively. (C) and (D) depict two IG/IG birds from the Lemon Millefleur Sabelpoot (Fig 1C) and Sebright-Lemon (Fig 1D) breeds, respectively. Photo by Michèle Tixier-Boichard (A and B) and C and D were taken by Nicolas Bruneau, INRAE (C and D).</p

    HA-tagged COMTD1 localizes to mitochondria in immortalized mouse melanocytes.

    No full text
    (A-D) Immortalized melan-Ink4a cells from Ink4a-deficient C57BL/6J mice were transiently transfected to express COMTD1 fused with the HA11 epitope at either the N-terminus (HA-COMTD1; A, C) or C-terminus (COMTD1-HA; B, D). Two days later, cells were fixed and analyzed by bright field (BF) and immunofluorescence microscopy for HA and either the mitochondrial resident protein MAVS (A, B) or the ER resident protein calnexin (CNX; C, D). Individual images of labelled cells or the bright field image are shown in addition to an overlay of HA (green) with MAVS (red; HA/ MAVS), CNX (red; HA/ CNX), or the pseudocolored bright field image (magenta; HA/BF). Insets show a 5-fold magnified image of the boxed region to emphasize overlap or lack thereof. Main scale bar, 10 μm; inset scale bar, 2 μm. (E) Quantification of the degree of overlap of COMTD1-HA or HA-COMTD1, as indicated, with markers of the ER (CNX; N = 29 for COMTD1-HA, N = 17 for HA-COMTD1), mitochondria (MAVS; N = 25 for COMTD1-HA, N = 16 for HA-COMTD1), mature melanosomes (TYRP1; N = 16), immature melanosomes (PMEL; N = 17), late endosomes/ lysosomes (LAMP2; N = 15), or early endosomes (STX13; N = 21). Data from 4–5 individual experiments are presented as a box and whiskers plot in which the area of overlap is shown relative to the total area occupied by HA (e.g., CNX vs. HA) or by the indicated marker (e.g., HA vs. CNX). See S2 Fig for examples of the data for TYRP1, PMEL, LAMP2 and STX13. Statistical significance was determined by ordinary one-way ANOVA with Tukey’s tests for multiple comparisons; ****, P < 0.0001.</p

    Primer sequences used in this paper.

    No full text
    The biochemical pathway regulating the synthesis of yellow/red pheomelanin is less well characterized than the synthesis of black/brown eumelanin. Inhibitor of gold (IG phenotype) is a plumage colour variant in chicken that provides an opportunity to further explore this pathway since the recessive allele (IG) at this locus is associated with a defect in the production of pheomelanin. IG/IG homozygotes display a marked dilution of red pheomelanin pigmentation, whilst black pigmentation (eumelanin) is only slightly affected. Here we show that a 2-base pair insertion (frame-shift mutation) in the 5th exon of the Catechol-O-methyltransferase containing domain 1 gene (COMTD1), expected to cause a complete or partial loss-of-function of the COMTD1 enzyme, shows complete concordance with the IG phenotype within and across breeds. We show that the COMTD1 protein is localized to mitochondria in pigment cells. Knockout of Comtd1 in a mouse melanocytic cell line results in a reduction in pheomelanin metabolites and significant alterations in metabolites of glutamate/glutathione, riboflavin, and the tricarboxylic acid cycle. Furthermore, COMTD1 overexpression enhanced cellular proliferation following chemical-induced transfection, a potential inducer of oxidative stress. These observations suggest that COMTD1 plays a protective role for melanocytes against oxidative stress and that this supports their ability to produce pheomelanin.</div
    corecore