87 research outputs found

    Results of bottom trawl surveys carried out in Vietnamese waters (20-200 m) in 1996-1997

    Get PDF
    Bottom trawl surveys were conducted in the southwest monsoon season in 1996 (survey 1) and in the northeast monsoon season in 1996-97 (survey 2) throughout Vietnamese waters. The surveys mainly covered the depth zone 50-200 m but in the northeast monsoon season the depth zone 20-50 m was included in the northern and southern areas. Overall, 273 trawl hauls were conducted. The total biomass for Vietnamese waters in the depth zone 20-200 m was estimated at 700 000 t . Biomass estimates are given for the most abundant species. A relatively higher mean catch-per-unit effort (CPUE) was obtained from survey 2 than from survey 1 and in partcular at depth ranges 50-100 and 100-200 m in south Vietnam. Overall, the dominant families were Monacanthidae (34%), Carangidae (15%), Trichiuridae (9%) and Synodontidae (6%)

    Machine condition prognosis using multi-step ahead prediction and neuro-fuzzy systems

    Get PDF
    This paper presents an approach to predict the operating conditions of machine based on adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machine’s operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis

    Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy?

    Get PDF
    Drug delivery via biodegradable microparticles benefits from both the protection of the encapsulated drug from hazardous conditions and the controlled release of the encapsulated drug, thereby reducing the administration frequency and improving patient compliance. Microsphere-size particle distribution is considered as being an important factor that affects the choice of the administration route and the drug-release rate. Significant research efforts have been directed towards the production of monodispersed "designer" particles. Amongst various techniques, some have been examined from lab-scale to industrial-scale. This review provides a global overview of monodispersed microparticle production methods and then focuses on recent processes being used to produce biodegradable microparticles applied in the pharmaceutical field. Further discussion about the choice of process according to the microparticle objectives of use is suggested

    Protocol for efficient CRISPR/Cas9/AAV-mediated homologous recombination in mouse hematopoietic stem and progenitor cells

    Get PDF
    Mutations that accumulate in self-renewing hematopoietic stem and progenitor cells (HSPCs) can cause severe blood disorders. To model such disorders in mice, we developed a CRISPR/Cas9/adeno-associated virus (AAV)-based system to knock in and repair genes by homologous recombination in mouse HSPCs. Here, we provide a step-by-step protocol to achieve high efficiency of gene knockin in mouse HSPCs, while maintaining engraftment capacity. This approach enables the functional study of hematopoietic disease mutations in vivo, without requiring germline mutagenesis

    Tilapia breeding in ricefields in Vietnam

    Get PDF
    Results of the studies undertaken for breeding and nursing Nile tilapia (Oreochromis niloticus) in ricefields in Thai Binh province in Vietnam during the years 1995-96 are briefly presented in this paper

    Enhancement of precise gene editing by the association of Cas9 with homologous recombination factors

    Get PDF
    The CRISPR-Cas9 system is used for genome editing in mammalian cells by introducing double-strand breaks (DSBs) which are predominantly repaired via non-homologous end joining (NHEJ) or to lesser extent by homology-directed repair (HDR). To enhance HDR for improving the introduction of precise genetic modifications, we tested fusion proteins of Cas9 nuclease with HDR effectors to enforce their localization at DSBs. Using a traffic-light DSB repair reporter (TLR) system for the quantitative detection of HDR and NHEJ events in human HEK cells we found that Cas9 fusions with CtIP, Rad52, and Mre11, but not Rad51C promote HDR up to twofold in human cells and significantly reduce NHEJ events. We further compared, as an alternative to the direct fusion with Cas9, two components configurations that associate CtIP fusion proteins with a Cas9-SunTag fusion or with guide RNA that includes MS2 binding loops. We found that the Cas9-CtIP fusion and the MS2-CtIP system, but not the SunTag approach increase the ratio of HDR/NHEJ 4.5–6-fold. Optimal results are obtained by the combined use of Cas9-CtIP and MS2-CtIP, shifting the HDR/NHEJ ratio by a factor of 14.9. Thus, our findings provide a simple and effective tool to promote precise gene modifications in mammalian cells

    Protein-loaded PLGA-PEG-PLGA microspheres: a tool for cell therapy.

    Get PDF
    International audienceA promising strategy to repair injured organs is possible by delivering a growth factor via poly-(D,L lactide-co-glycolide) (PLGA) microspheres; the latter are coated with adhesion molecules that serve as a support for cell delivery. At present, PLGA is not the optimal choice of polymer because of poor or incomplete protein release. The use of a more hydrophilic PLGA-PEG-PLGA (A-B-A) copolymer increases the degree of protein release. In this work, the impact of different combinations of (B) and (A) segments on the protein-release profile has been investigated. Continuous-release profiles, with no lag phases, were observed. The triblock ABA with a low molecular weight of PEG and a high molecular weight of PLGA showed an interesting release pattern with a small burst (<10% in 48 h) followed by sustained, protein release over 36 days. Incomplete protein release was found to be due to various causes: protein adsorption, protein aggregation and protein denaturation under acidic conditions. Interestingly, cell viability and cell adhesion on microspheres coated with fibronectin highlight the interest of these polymers for tissue engineering applications

    New PLGA-P188-PLGA matrix enhances TGF-β3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells

    Get PDF
    The use of injectable scaffolding materials for in vivo tissue regeneration has raised great interest in various clinical applications because it allows cell implantation through minimally invasive surgical procedures. In case of cartilage repair, a tissue engineered construct should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable poly(d,l-lactide-co-glycolide acid) (PLGA), are a unique system, which combines these properties in an adaptable and simple microdevice. However, a limitation of such scaffold is low and incomplete protein release that occurs using the hydrophobic PLGA based microspheres. To circumvent this problem, we developed a novel formulation of polymeric PAMs containing a P188 poloxamer, which protects the protein from denaturation and may positively affect chondrogenesis. This poloxamer was added as a free additive for protein complexation and as a component of the scaffold covalently linked to PLGA. This procedure allows getting a more hydrophilic scaffold but also retaining the protective polymer inside the microcarriers during their degradation. The novel PLGA-P188-PLGA PAMs presenting a fibronectin-covered surface allowed enhanced MSC survival and proliferation. When engineered with TGFβ3, they allowed the sustained release of 70% of the incorporated TGF-β3 over time. Importantly, they exerted superior chondrogenic differentiation potential compared to previous FN-PAM-PLGA-TGF-β3, as shown by an increased expression of specific cartilage markers such as cartilage type II, aggrecan and COMP. Therefore, this microdevice represents an efficient easy-to-handle and injectable tool for cartilage repair

    Efficient CRISPR/Cas9-mediated gene knockin in mouse hematopoietic stem and progenitor cells

    Get PDF
    Mutations accumulating in hematopoietic stem and progenitor cells (HSPCs) during development can cause severe hematological disorders. Modeling these mutations in mice is essential for understanding their functional consequences. Here, we describe an efficient CRISPR/Cas9-based system to knock in and repair genes in mouse HSPCs. CRISPR/Cas9 ribonucleoproteins, in combination with recombinant adeno-associated virus (rAAV)-DJ donor templates, led to gene knockin efficiencies of up to 30% in the Lmnb1 and Actb loci of mouse HSPCs in vitro. The targeted HSPCs engraft and reconstitute all immune cell lineages in the recipient mice. Using this approach, we corrected a neomycin-disrupted Rag2 gene. The Rag2-corrected HSPCs restore B and T cell development in vivo, confirming the functionality of the approach. Our method provides an efficient strategy to study gene function in the hematopoietic system and model hematological disorders in vivo, without the need for germline mutagenesis
    corecore