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ABSTRACT 
 

This paper presents an approach to predict the operating conditions of machine based on adaptive 
neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step 
ahead prediction of time series techniques. In this study, the number of available observations and the 
number of predicted steps are initially determined by using false nearest neighbor method and auto 
mutual information technique, respectively. These values are subsequently utilized as inputs for 
prediction models to forecast the future values of the machine’s operating conditions. The performance 
of the proposed approach is then evaluated by using real trending data of low methane compressor. 
The results show that the ANFIS prediction model can track the change in machine conditions and has 
the potential for using as a tool to machine fault prognosis.  

 

 
1. INTRODUCTION 

 
The fault progression process of machine 

usually consists of a series of degradations 
mainly due to the component wear and fatigue 
during the operation process. Early detection of 
incipient faults and foretelling the future states 
can minimize unplanned breakdown and avoid 
unnecessary maintenance. Thence, the 
availability and reliability of machine will be 
increased. Consequently, machine condition 
prognosis has been the subject of considerable 
researches in recent years. 

Prognosis is the ability to predict accurately 
the future health states and failure modes based 
on current health assessment and historical 
trends [1]. There are two main functions of 
machine prognosis: failure prediction and 
remaining useful life (RUL) estimation. Failure 
prediction, which is addressed in this paper, 
allows pending failures to be identified early 
before they come to more serious failures that 
result machine breakdown and repair costs. RUL 
is the time left before a particular fault will 
occur or the part needs to be replaced. The 
techniques related to prognosis can be broadly 
classified as experience-based, model-based, and 
data-driven based techniques. From these 

techniques, data-driven is the promising and 
effective technique due to its flexibility in 
generating appropriate model. The outstanding 
data-driven prognosis approaches are found in 
references [2-4]. 

In addition, the more future states are 
predicted precisely, the more effective the 
maintenance activities become. For that reason, 
long-term prediction methodology is considered 
in machine condition prognosis significantly. 
There are three strategies mainly used in long-
term prediction interpreted as follows: recursive, 
DirRec, and direct prediction strategy [5]. 
Recursive and DirRec prediction strategies have 
the drawback that the accumulated error in 
previous predicting process will be added in the 
next step. Consequently, the direct prediction 
strategy is used in this paper. 

Other problems to be dealt with machine 
condition prognosis are the number of 
observations (embedding dimension) and the 
number of predicted values (time delay). The 
former problem can be solved by using the false 
nearest neighbour method (FNN) [6]. The latter 
can be calculated by using auto mutual 
information (AMI) [7]. After determining the 
embedding dimension and time delay, ANFIS 
[8] is utilized as the prediction model for the 



purposes of forecasting the future operating 
condition of machine. 
2. PROPOSED SYSTEMS 

 
The proposed system for machine condition 

prognosis comprises four procedures 
sequentially as depicted in Fig. 1. Data 
acquisition procedure is used to obtain the 
vibration data from machine condition. In the 
data splitting procedure, the trending data 
attained from previous procedure is split into 
training set and testing set for different purposes. 
Training- validating procedure includes the 
following sub-procedures: determining the time 
delay and the embedding dimension based on 
AMI and FNN method, respectively; creating 
the prediction models and validating those 
models. In the predicting procedure, long-term 
direct prediction method is used to forecast the 
future values of machine condition. The 
predicted results are measured by the error 
between predicted values and actual values in 
the testing set. Models and updated data are also 
carried out for the next prediction process. 
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Fig.1 Proposed system for machine condition 
prognosis 

3. EXPERIMENTS 

 
The proposed method is applied to a real 

system to predict the trending data of a low 
methane compressor as shown in Fig. 2. 
Information of the system is summarized in 
Table 1.  

 

 Fig.1 Low methane compressor: wet screw 

type 

 

Table 1 Information of the system 

Electric motor Compressor 

Voltage 6600 V Type Wet screw 

Power 440 kW 

Lobe 

Male rotor  

(4 lobes) 

Pole 2 Pole 
Female rotor  

(6 lobes) 

Bearing 
NDE:#6216 

DE:#6216 
Bearing 

Thrust: 7321 

BDB 

RPM 3565 rpm 
Radial: Sleeve 

type 

 
The trending data was recorded from August 

2005 to November 2005 which the average 
recording duration was 6 hours. This data 
includes peak acceleration and envelope 
acceleration data and consists of approximately 
1200 data points as shown in Figs. 2 and 3, and 
contains information of machine history with 
respect to time sequence (vibration amplitude). 

The machine is in normal condition during the 
first 300 points of the time sequence. After that 
time, the condition of the machine suddenly 
changes. This indicates that there are some faults 
occurring in the machine.  These faults were 
identified as the damages of main bearings of 
the compressor (notation Thrust: 7321 BDB) 
due to insufficient lubrication. 

 
 



 
 

 Fig.2 The entire of peak acceleration data of 

low methane compressor 

 

 Fig.3 The entire of peak acceleration data of 

low methane compressor 

 

With the aim of forecasting the change of 
machine condition, the first 300 points were 
used to train the system. In order to evaluate the 
predicting performance, the root-mean square 
error (RMSE) is utilized as following 
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where N, yi, ŷi represent the total number of data 
points, the actual value, and predicted value, 
respectively. 

 
 
4. RESULTS AND DISCUSSION 

 
With the aim of forecasting the change of 

machine condition, the first 300 points were 
used to train the system. Before being used to 
generate the prediction models, the time delay τ 
is initially calculated. Theoretically, the optimal 
time delay is the value at which the AMI obtains 
the first local minimum. From Fig. 4, the 
optimal time delay of peak acceleration training 
data is found as 7. Similarly, 5 is the optimal 
time delay value of envelope acceleration 
training data. 
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Fig.4 Time delay estimation. 
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Fig. 5. The relationship between FNN 

percentage and embedding dimension.  

 

Using FNN method, the optimal time delay τ 
is subsequently utilized to determine the 
embedding dimension d. It is noted that the 
tolerance level Rtol and threshold Atol must be 
initially chosen. In this study, 15

tol
R =  and 

2
tol

A =  are used according to the results from 



[6]. The relationship between the false nearest 
neighbor percentage and the embedding 
dimension for both peak acceleration data and 
envelope data is shown in Fig. 5. From the 
figure, the embedding dimension d is chosen as 
4 for both data sets where the false nearest 
neighbor percentage reaches to 0. 

After calculating the time delay and 
embedding dimension, the process of generating 
the prediction models is carried out. In case of 
the ANFIS model, the bell shape is chosen for 
each membership function (MF) and the number 
of MFs is 2. After executing 100 epochs, all 
RMS errors of the outputs reach the convergent 
stage for both the peak acceleration data and 
envelope acceleration data as shown in Fig. 6. 
Alternatively, the parameters of MFs, which are 

premise parameters and consequent parameters, 
are automatically adjusted through the learning 
in order that the outputs of ANFIS model match 
the actual values in training data. The changes of 
MF shapes are depicted in Fig. 7 

 

(a) 

 

(b) 

Fig.6 RMSE convergent curve. (a) Peak 
acceleration, (b) Envelop acceleration. 
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Fig. 7. The changes of MFs after learning. (a) 
Peak acceleration, (b) Envelope acceleration. 

 
The training and validating results of ANFIS 

models for both the peak acceleration data and 
envelope acceleration data are respectively 
shown in Fig. 8. From these figures, the RMSE 
values are sequentially 0.00876 and 0.08886. 
For higher accuracy of RMSEs, the MFs can be 
increased. Nevertheless, this will also increase 
the computational complexity and take too much 
training time. 

Fig. 9 shows the predicted results of the 
ANFIS models for peak acceleration and 
envelope acceleration data. The RMSE values of 
the ANFIS model for those data are summarized 
in Table 2. Obviously, the predicted results of 
ANFIS models can keep track with the changes 
of the operating condition of machine more 
precisely. This is of crucial importance in 
industrial application for estimating the time-to-
failure of equipments. As mentioned above, the 
predicted results of ANFIS models can be 
improved by adjusting the parameters of ANFIS. 



However, these changes should take into 
consideration the increase of computational 
complexity and time-consumption of the training 
process which may lead to unrealistic 
application in real life. 
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Fig.8 Training and validating results of ANFIS 
model (a) peak acceleration data, (b) envelope 
acceleration data 
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(b) 

Fig. 9 Predicted results of ANFIS model: (a) 
peak acceleration data, (b) envelope acceleration 
data. 

 
Table 2. The RMSEs of predicted results 

Data type Training Testing 

Peak 

acceleration 
0.00876 0.1708 

Envelope 

acceleration 
0.08886 0.2938 

 
 

5. CONCLUSIONS 

 

Machine condition prognosis is extremely 
essential in foretelling the degradation of 
operating conditions and trends of fault 
propagation before they reach the final failure 
threshold. In this study, multi-step ahead direct 
prediction for the operating conditions of 
machine based on data-driven approach has been 
investigated. The ANFIS prediction model is 
validated by its ability to predict future state 
conditions of a low methane compressor using 
the peak acceleration and envelope acceleration 
data. The predicted results show that they are 
capable of tracking the change of machines’ 
operating conditions with acceptable accuracy. 
The tracking-change capability of operating 
conditions is of crucial importance in estimating 
the RUL of industrial equipments. This means 
that ANFIS has the potential for using as a tool 
to machine condition prognosis. 
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