15,837 research outputs found

    Co-doping red-emitting Sr2Si5N8:Eu2+ into yellow-emitting phosphor-packaging for enhancing the optical properties of the 8500 K remote-phosphor packaging wleds

    Get PDF
    In the last decades, WLEDs attract more and more consideration in both academic and industrial purposes because of its advantages such as fast response time, environment friendliness, small size, long lifetime, and high efficiency. In this research, by doping the red-emitting Sr2Si5N8:Eu2+ phosphor particles into yellow-emitting YAG:Ce phosphor-packaging, a new recommendation for enhancing the optical properties (color uniformity, color rendering index, and lumen output) of the 8500 K remote-phosphor packaging WLEDs is presented, investigated, and demonstrated. By using Mat Lab and Light Tools software based on Mie Theory, the obtained results show that the optical properties of the 8500 K remote-phosphor packaging WLEDs significantly depended on Sr2Si5N8:Eu2+ concentration. The results have provided a potential practical recommendation for manufacturing remote-phosphor W-LEDs.Web of Science1341034102

    Closed-form Absorption Probability of Certain D=5 and D=4 Black Holes and Leading-Order Cross-Section of Generic Extremal p-branes

    Get PDF
    We obtain the closed-form absorption probabilities for minimally-coupled massless scalars propagating in the background of D=5 single-charge and D=4 two-charge black holes. These are the only two examples of extremal black holes with non-vanishing absorption probabilities that can be solved in closed form for arbitrary incident frequencies. In both cases, the absorption probability vanishes when the frequency is below a certain threshold, and we discuss the connection between this phenomenon and the behaviour of geodesics in these black hole backgrounds. We also obtain leading-order absorption cross-sections for generic extremal p-branes, and show that the expression for the cross-section as a function of frequency coincides with the leading-order dependence of the entropy on the temperature in the corresponding near-extremal p-branes.Comment: Latex (3 times), 20 page

    U-duality as General Coordinate Transformations, and Spacetime Geometry

    Get PDF
    We show that the full global symmetry groups of all the D-dimensional maximal supergravities can be described in terms of the closure of the internal general coordinate transformations of the toroidal compactifications of D=11 supergravity and of type IIB supergravity, with type IIA/IIB T-duality providing an intertwining between the two pictures. At the quantum level, the part of the U-duality group that corresponds to the surviving discretised internal general coordinate transformations in a given picture leaves the internal torus invariant, while the part that is not described by internal general coordinate transformations can have the effect of altering the size or shape of the internal torus. For example, M-theory compactified on a large torus T^n can be related by duality to a compactification on a small torus, if and only if n\ge 3. We also discuss related issues in the toroidal compactification of the self-dual string to D=4. An appendix includes the complete results for the toroidal reduction of the bosonic sector of type IIB supergravity to arbitrary dimensions D\ge3.Comment: Latex, 28 page

    A molecular perspective on the limits of life: Enzymes under pressure

    Full text link
    From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or "extremophiles", leads to the question of how the molecules making up these microbes can maintain both their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure have been neglected, in part due to the difficulty of collecting samples and performing experiments under the ambient conditions of the microbe. However, thermodynamic arguments imply that the effects of pressure might lead to different organismal solutions than from the effects of temperature. Observationally, some of these solutions might be in the condensed matter properties of the intracellular milieu in addition to genetic modifications of the macromolecules or repair mechanisms for the macromolecules. Here, the effects of pressure on enzymes, which are proteins essential for the growth and reproduction of an organism, and some adaptations against these effects are reviewed and amplified by the results from molecular dynamics simulations. The aim is to provide biological background for soft matter studies of these systems under pressure.Comment: 16 pages, 8 figure

    Supporting User-Defined Functions on Uncertain Data

    Get PDF
    Uncertain data management has become crucial in many sensing and scientific applications. As user-defined functions (UDFs) become widely used in these applications, an important task is to capture result uncertainty for queries that evaluate UDFs on uncertain data. In this work, we provide a general framework for supporting UDFs on uncertain data. Specifically, we propose a learning approach based on Gaussian processes (GPs) to compute approximate output distributions of a UDF when evaluated on uncertain input, with guaranteed error bounds. We also devise an online algorithm to compute such output distributions, which employs a suite of optimizations to improve accuracy and performance. Our evaluation using both real-world and synthetic functions shows that our proposed GP approach can outperform the state-of-the-art sampling approach with up to two orders of magnitude improvement for a variety of UDFs. 1

    Geographical distribution of selected and putatively neutral SNPs in Southeast Asian malaria parasites.

    Get PDF
    Loci targeted by directional selection are expected to show elevated geographical population structure relative to neutral loci, and a flurry of recent papers have used this rationale to search for genome regions involved in adaptation. Studies of functional mutations that are known to be under selection are particularly useful for assessing the utility of this approach. Antimalarial drug treatment regimes vary considerably between countries in Southeast Asia selecting for local adaptation at parasite loci underlying resistance. We compared the population structure revealed by 10 nonsynonymous mutations (nonsynonymous single-nucleotide polymorphisms [nsSNPs]) in four loci that are known to be involved in antimalarial drug resistance, with patterns revealed by 10 synonymous mutations (synonymous single-nucleotide polymorphisms [sSNPs]) in housekeeping genes or genes of unknown function in 755 Plasmodium falciparum infections collected from 13 populations in six Southeast Asian countries. Allele frequencies at known nsSNPs underlying resistance varied markedly between locations (F(ST) = 0.18-0.66), with the highest frequencies on the Thailand-Burma border and the lowest frequencies in neighboring Lao PDR. In contrast, we found weak but significant geographic structure (F(ST) = 0-0.14) for 8 of 10 sSNPs. Importantly, all 10 nsSNPs showed significantly higher F(ST) (P < 8 x 10(-5)) than simulated neutral expectations based on observed F(ST) values in the putatively neutral sSNPs. This result was unaffected by the methods used to estimate allele frequencies or the number of populations used in the simulations. Given that dense single-nucleotide polymorphism (SNP) maps and rapid SNP assay methods are now available for P. falciparum, comparing genetic differentiation across the genome may provide a valuable aid to identifying parasite loci underlying local adaptation to drug treatment regimes or other selective forces. However, the high proportion of polymorphic sites that appear to be under balancing selection (or linked to selected sites) in the P. falciparum genome violates the central assumption that selected sites are rare, which complicates identification of outlier loci, and suggests that caution is needed when using this approach

    Harmonic superpositions of non-extremal p-branes

    Get PDF
    The plot of allowed p and D values for p-brane solitons in D-dimensional supergravity is the same whether the solitons are extremal or non-extremal. One of the useful tools for relating different points on the plot is vertical dimensional reduction, which is possible if periodic arrays of p-brane solitons can be constructed. This is straightforward for extremal p-branes, since the no-force condition allows arbitrary multi-centre solutions to be constructed in terms of a general harmonic function on the transverse space. This has also been shown to be possible in the special case of non-extremal black holes in D=4 arrayed along an axis. In this paper, we extend previous results to include multi-scalar black holes, and dyonic black holes. We also consider their oxidation to higher dimensions, and we discuss general procedures for constructing the solutions, and studying their symmetries.Comment: Latex, 23 page
    corecore