25,990 research outputs found
Lunar nuclear power feasibility study
Based on review of literature and on limited examination of nuclear power systems now proposed for space applications, a nuclear fission reactor powered system should be seriously considered as the first large (order of 50 kWe or greater) power system to be placed on a lunar base. With relatively minor modifications, the major one being addition of a cooled side shield, the proposed 100 kWe product of the SP-100 Program could be adapted for use on a lunar base
Novel duality in disorder driven local quantum criticality
We find that competition between random Kondo and random magnetic
correlations results in a quantum phase transition from a local Fermi liquid to
a spin liquid. The local charge susceptibility turns out to have exactly the
same critical exponent as the local spin susceptibility, suggesting novel
duality between the Kondo singlet phase and the critical local moment state
beyond the Landau-Ginzburg-Wilson symmetry breaking framework. This leads us to
propose an enhanced symmetry at the local quantum critical point, described by
an O(4) vector for spin and charge. The symmetry enhancement serves mechanism
of electron fractionalization in critical impurity dynamics, where such
fractionalized excitations are identified with topological excitations
Closed-form Absorption Probability of Certain D=5 and D=4 Black Holes and Leading-Order Cross-Section of Generic Extremal p-branes
We obtain the closed-form absorption probabilities for minimally-coupled
massless scalars propagating in the background of D=5 single-charge and D=4
two-charge black holes. These are the only two examples of extremal black holes
with non-vanishing absorption probabilities that can be solved in closed form
for arbitrary incident frequencies. In both cases, the absorption probability
vanishes when the frequency is below a certain threshold, and we discuss the
connection between this phenomenon and the behaviour of geodesics in these
black hole backgrounds. We also obtain leading-order absorption cross-sections
for generic extremal p-branes, and show that the expression for the
cross-section as a function of frequency coincides with the leading-order
dependence of the entropy on the temperature in the corresponding near-extremal
p-branes.Comment: Latex (3 times), 20 page
Thermal reaction of Al/Ti bilayers with contaminated interface
We have studied some new aspects of thermal reactions in Al/Ti bilayers in which the interface is purposely contaminated with oxygen. After annealing at a temperature of 460 °C, an Al_3Ti compound forms at the interface, moreover some Al diffuses through the Ti to form a compound at the free surface. The amount of aluminum at the free surface can be as large as at the interface. Nucleation and lateral growth of Al_3Ti at the interface are locally unfavorable. This results in a competition between the lateral growth of Al_3Ti at the Al/Ti interface and the diffusion of Al to the free surface. Once full coverage by Al_3Ti is obtained at the Al/Ti interface, the diffusion of Al to the surface becomes negligible
Enhancement of the Spin Accumulation at the Interface Between a Spin-Polarized Tunnel Junction and a Semiconductor
We report on spin injection experiments at a Co/AlO/GaAs interface
with electrical detection. The application of a transverse magnetic field
induces a large voltage drop at the interface as high as 1.2mV for a
current density of 0.34 nA.. This represents a dramatic increase of
the spin accumulation signal, well above the theoretical predictions for spin
injection through a ferromagnet/semiconductor interface. Such an enhancement is
consistent with a sequential tunneling process via localized states located in
the vicinity of the AlO/GaAs interface. For spin-polarized carriers
these states act as an accumulation layer where the spin lifetime is large. A
model taking into account the spin lifetime and the escape tunneling time for
carriers travelling back into the ferromagnetic contact reproduces accurately
the experimental results
On the Microcanonical Entropy of a Black Hole
It has been suggested recently that the microcanonical entropy of a system
may be accurately reproduced by including a logarithmic correction to the
canonical entropy. In this paper we test this claim both analytically and
numerically by considering three simple thermodynamic models whose energy
spectrum may be defined in terms of one quantum number only, as in a
non-rotating black hole. The first two pertain to collections of noninteracting
bosons, with logarithmic and power-law spectra. The last is an area ensemble
for a black hole with equi-spaced area spectrum. In this case, the many-body
degeneracy factor can be obtained analytically in a closed form. We also show
that in this model, the leading term in the entropy is proportional to the
horizon area A, and the next term is ln A with a negative coefficient.Comment: 15 pages, 1 figur
Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor.
Signaling through growth factor receptors controls such diverse cell functions as proliferation, migration, and differentiation. A critical question has been how the activation of these receptors is regulated. Most, if not all, of the known ligands for these receptors are soluble factors. However, as matrix components are highly tissue-specific and change during development and pathology, it has been suggested that select growth factor receptors might be stimulated by binding to matrix components. Herein, we describe a new class of ligand for the epidermal growth factor (EGF) receptor (EGFR) found within the EGF-like repeats of tenascin-C, an antiadhesive matrix component present during organogenesis, development, and wound repair. Select EGF-like repeats of tenascin-C elicited mitogenesis and EGFR autophosphorylation in an EGFR-dependent manner. Micromolar concentrations of EGF-like repeats induced EGFR autophosphorylation and activated extracellular signal-regulated, mitogen-activated protein kinase to levels comparable to those induced by subsaturating levels of known EGFR ligands. EGFR-dependent adhesion was noted when the ligands were tethered to inert beads, simulating the physiologically relevant presentation of tenascin-C as hexabrachion, and suggesting an increase in avidity similar to that seen for integrin ligands upon surface binding. Specific binding to EGFR was further established by immunofluorescence detection of EGF-like repeats bound to cells and cross-linking of EGFR with the repeats. Both of these interactions were abolished upon competition by EGF and enhanced by dimerization of the EGF-like repeat. Such low affinity behavior would be expected for a matrix-tethered ligand; i.e., a ligand which acts from the matrix, presented continuously to cell surface EGF receptors, because it can neither diffuse away nor be internalized and degraded. These data identify a new class of insoluble growth factor ligands and a novel mode of activation for growth factor receptors
Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area.
By prohibiting fishing, marine protected areas (MPAs) provide a refuge for harvested species. Humans are often perceived as predators by prey and therefore respond fearfully to humans. Thus, fish responses to humans inside and outside of an MPA can provide insights into their perception of humans as a predatory threat. Previous studies have found differences in the distance that harvested species of fish initiate flight (flight initiation distance-FID) from humans inside and outside an MPA, but less is known about unharvested species. We focused on whether the lined bristletooth Ctenochaetus striatus, an unharvested surgeonfish, can discriminate between a snorkeler and a snorkeler with a spear gun inside and outside of a no-take MPA in Mo'orea, French Polynesia. Additionally, we incorporated starting distance (the distance between the person and prey at the start of an experimental approach), a variable that has been found to be important in assessing prey escape decisions in terrestrial species, but that has not been extensively studied in aquatic systems. Lined bristletooth FID was significantly greater in the presence of a spear gun and varied depending on if the spear gun encounter was inside or outside of the MPA. These results imply a degree of sophistication of fish antipredator behavior, generate questions as to how a nontargeted species of fish could acquire fear of humans, and demonstrate that behavioral surveys can provide insights about antipredator behavior
U-duality as General Coordinate Transformations, and Spacetime Geometry
We show that the full global symmetry groups of all the D-dimensional maximal
supergravities can be described in terms of the closure of the internal general
coordinate transformations of the toroidal compactifications of D=11
supergravity and of type IIB supergravity, with type IIA/IIB T-duality
providing an intertwining between the two pictures. At the quantum level, the
part of the U-duality group that corresponds to the surviving discretised
internal general coordinate transformations in a given picture leaves the
internal torus invariant, while the part that is not described by internal
general coordinate transformations can have the effect of altering the size or
shape of the internal torus. For example, M-theory compactified on a large
torus T^n can be related by duality to a compactification on a small torus, if
and only if n\ge 3. We also discuss related issues in the toroidal
compactification of the self-dual string to D=4. An appendix includes the
complete results for the toroidal reduction of the bosonic sector of type IIB
supergravity to arbitrary dimensions D\ge3.Comment: Latex, 28 page
Harmonic superpositions of non-extremal p-branes
The plot of allowed p and D values for p-brane solitons in D-dimensional
supergravity is the same whether the solitons are extremal or non-extremal. One
of the useful tools for relating different points on the plot is vertical
dimensional reduction, which is possible if periodic arrays of p-brane solitons
can be constructed. This is straightforward for extremal p-branes, since the
no-force condition allows arbitrary multi-centre solutions to be constructed in
terms of a general harmonic function on the transverse space. This has also
been shown to be possible in the special case of non-extremal black holes in
D=4 arrayed along an axis. In this paper, we extend previous results to include
multi-scalar black holes, and dyonic black holes. We also consider their
oxidation to higher dimensions, and we discuss general procedures for
constructing the solutions, and studying their symmetries.Comment: Latex, 23 page
- …