10 research outputs found

    Microencapsulation of Lemongrass (Cymbopogon citratus) Essential Oil Via Spray Drying: Effects of Feed Emulsion Parameters

    No full text
    The purpose of this study was to attempt the encapsulation of lemongrass (Cymbopogon citratus) essential oil utilizing spray drying technique. An array of process parameters including concentration of wall (15–30%), type of wall materials (maltodextrin, maltodextrin and gum Arabic mixture), and concentration of essential oil (0.5–2.0%) were thoroughly investigated. The results show that the use of sole maltodextrin as encapsulant gave microcapsules characteristics comparable to that of powder produced using maltodextrin and gum Arabic mixture. The encapsulation process that was performed with maltodextrin at the concentration of 30% as wall material and lemongrass essential oil at the concentration of 1.5% as core material showed highest drying yield (84.49%), microencapsulation yield (89.31%) and microencapsulation efficiency (84.75%). Encapsulated essential oils retained most of their major constituents in comparison with the bare essential oils without any significant compromise in product quality

    Burden of Hospital Acquired Infections and Antimicrobial Use in Vietnamese Adult Intensive Care Units

    No full text
    Background Vietnam is a lower middle-income country with no national surveillance system for hospital-acquired infections (HAIs). We assessed the prevalence of hospital-acquired infections and antimicrobial use in adult intensive care units (ICUs) across Vietnam. Methods Monthly repeated point prevalence surveys were systematically conducted to assess HAI prevalence and antimicrobial use in 15 adult ICUs across Vietnam. Adults admitted to participating ICUs before 08: 00 a.m. on the survey day were included. Results Among 3287 patients enrolled, the HAI prevalence was 29.5% (965/3266 patients, 21 missing). Pneumonia accounted for 79.4% (804/1012) of HAIs Most HAIs (84.5% [855/1012]) were acquired in the survey hospital with 42.5% (363/855) acquired prior to ICU admission and 57.5% (492/855) developed during ICU admission. In multivariate analysis, the strongest risk factors for HAI acquired in ICU were: intubation (OR 2.76), urinary catheter (OR 2.12), no involvement of a family member in patient care (OR 1.94), and surgery after admission (OR 1.66). 726 bacterial isolates were cultured from 622/1012 HAIs, most frequently Acinetobacter baumannii (177/726 [24.4%]), Pseudomonas aeruginosa (100/726 [13.8%]), and Klebsiella pneumoniae (84/726 [11.6%]), with carbapenem resistance rates of 89.2%, 55.7%, and 14.9% respectively. Antimicrobials were prescribed for 84.8% (2787/ 3287) patients, with 73.7% of patients receiving two or more. The most common antimicrobial groups were third generation cephalosporins, fluoroquinolones, and carbapenems (20.1%, 19.4%, and 14.1% of total antimicrobials, respectively). Conclusion A high prevalence of HAIs was observed, mainly caused by Gram-negative bacteria with high carbapenem resistance rates. This in combination with a high rate of antimicrobial use illustrates the urgent need to improve rational antimicrobial use and infection control efforts

    Morphological Changes of 3T3 Cells under Simulated Microgravity

    No full text
    Background: Cells are sensitive to changes in gravity, especially the cytoskeletal structures that determine cell morphology. The aim of this study was to assess the effects of simulated microgravity (SMG) on 3T3 cell morphology, as demonstrated by a characterization of the morphology of cells and nuclei, alterations of microfilaments and microtubules, and changes in cycle progression. Methods: 3T3 cells underwent induced SMG for 72 h with Gravite®, while the control group was under 1G. Fluorescent staining was applied to estimate the morphology of cells and nuclei and the cytoskeleton distribution of 3T3 cells. Cell cycle progression was assessed by using the cell cycle app of the Cytell microscope, and Western blot was conducted to determine the expression of the major structural proteins and main cell cycle regulators. Results: The results show that SMG led to decreased nuclear intensity, nuclear area, and nuclear shape and increased cell diameter in 3T3 cells. The 3T3 cells in the SMG group appeared to have a flat form and diminished microvillus formation, while cells in the control group displayed an apical shape and abundant microvilli. The 3T3 cells under SMG exhibited microtubule distribution surrounding the nucleus, compared to the perinuclear accumulation in control cells. Irregular forms of the contractile ring and polar spindle were observed in 3T3 cells under SMG. The changes in cytoskeleton structure were caused by alterations in the expression of major cytoskeletal proteins, including β-actin and α-tubulin 3. Moreover, SMG induced 3T3 cells into the arrest phase by reducing main cell cycle related genes, which also affected the formation of cytoskeleton structures such as microfilaments and microtubules. Conclusions: These results reveal that SMG generated morphological changes in 3T3 cells by remodeling the cytoskeleton structure and downregulating major structural proteins and cell cycle regulators
    corecore