937 research outputs found

    On the usefulness of finding charts Or the runaway carbon stars of the Blanco & McCarthy field 37

    Get PDF
    We have been recently faced with the problem of cross--identifying stars recorded in historical catalogues with those extracted from recent fully digitized surveys (such as DENIS and 2MASS). Positions mentioned in the old catalogues are frequently of poor precision, but are generally accompanied by finding charts where the interesting objects are flagged. Those finding charts are sometimes our only link with the accumulated knowledge of past literature. While checking the identification of some of these objects in several catalogues, we had the surprise to discover a number of discrepancies in recent works.The main reason for these discrepancies was generally the blind application of the smallest difference in position as the criterion to identify sources from one historical catalogue to those in more recent surveys. In this paper we give examples of such misidentifications, and show how we were able to find and correct them.We present modern procedures to discover and solve cross--identification problems, such as loading digitized images of the sky through the Aladin service at CDS, and overlaying entries from historical catalogues and modern surveys. We conclude that the use of good finding charts still remains the ultimate (though time--consuming) tool to ascertain cross--identifications in difficult cases.Comment: 4 pages, 1 figure, accepted by A&

    XSHOOTER spectroscopy of the enigmatic planetary nebula Lin49 in the Small Magellanic Cloud

    Get PDF
    We performed a detailed spectroscopic analysis of the fullerene C60-containing planetary nebula (PN) Lin49 in the Small Magellanic Cloud (SMC) using XSHOOTER at the European Southern Observatory Very Large Telescope and the Spitzer/Infrared Spectrograph instruments. We derived nebular abundances for nine elements. We used TLUSTY to derive photospheric parameters for the central star. Lin49 is C-rich and metal-deficient PN (Z ∼ 0.0006). The nebular abundances are in good agreement with asymptotic giant branch nucleosynthesis models for stars with initial mass 1.25 M⊙ and metallicity Z = 0.001. Using the TLUSTY synthetic spectrum of the central star to define the heating and ionizing source, we constructed the photoionization model with CLOUDY that matches the observed spectral energy distribution (SED) and the line fluxes in the UV to far-IR wavelength ranges simultaneously. We could not fit the ∼1–5 μm SED using a model with 0.005–0.1-μm-sized graphite grains and a constant hydrogen density shell owing to the prominent near-IR excess, while at other wavelengths the model fits the observed values reasonably well. We argue that the near-IR excess might indicate either (1) the presence of very small particles in the form of small carbon clusters, small graphite sheets, or fullerene precursors, or (2) the presence of a high-density structure surrounding the central star. We found that SMC C60 PNe show a near-IR excess component to lesser or greater degree. This suggests that these C60 PNe might maintain a structure nearby their central star

    The composition and nature of the dust shell surrounding the binary AFGL 4106

    Get PDF
    We present infrared spectroscopy and imaging of AFGL~4106. The 2.4-5 micron ISO-SWS spectrum reveals the presence of a cool, luminous star (T_eff ~ 3750 K) in addition to an almost equally luminous F star (T_eff ~ 7250 K). The 5-195 micron SWS and LWS spectra are dominated by strong emission from circumstellar dust. We find that the dust consists of amorphous silicates, with a minor but significant contribution from crystalline silicates. The amorphous silicates consist of Fe-rich olivines. The presence of amorphous pyroxenes cannot be excluded but if present they contain much less Fe than the amorphous olivines. Comparison with laboratory data shows that the pure Mg-end members of the crystalline olivine and pyroxene solid solution series are present. In addition, we find strong evidence for simple oxides (FeO and Al2O3) as well as crystalline H2O ice. Several narrow emission features remain unidentified. Modelling of the dust emission using a dust radiation transfer code shows that large grains (~1 micron) must be present and that the abundance of the crystalline silicates is between 7 and 15% of the total dust mass, depending on the assumed enstatite to forsterite ratio, which is estimated to be between 1 and 3. The amorphous and crystalline dust components in the shell do not have the same temperature, implying that the different dust species are not thermally coupled. We find a dust mass of ~3.9 x 10^-2 M_sol expelled over a period of 4 x 10^3 years for a distance of 3.3 kpc. The F-star in the AFGL~4106 binary is likely a post-red-supergiant in transition to a blue supergiant or WR phase.Comment: 22 pages (including 12 figures), accepted by Astronomy and Astrophysic

    IRAS04496-6958: A luminous carbon star with silicate dust in the Large Magellanic Cloud

    Get PDF
    We describe ISO observations of the obscured Asymptotic Giant Branch (AGB) star IRAS04496-6958 in the Large Magellanic Cloud (LMC). This star has been classified as a carbon star. Our new ISOCAM CVF spectra show that it is the first carbon star with silicate dust known outside of the Milky Way. The existence of this object, and the fact that it is one of the highest luminosity AGB stars in the LMC, provide important information for theoretical models of AGB evolution and understanding the origin of silicate carbon stars.Comment: 4 pages, 3 figures, accepted for publication in A&A Letter

    Luminosities of AGB Variables

    Get PDF
    The prevailing evidence suggests that most large-amplitude AGB variables follow the period luminosity (PL) relation that has been established for Miras in the LMC and galactic globular clusters. Hipparcos observations indicate that most Miras in the solar neighbourhood are consistent with such a relation. There are two groups of stars with luminosities that are apparently greater than the PL relation would predict: (1) in the LMC and SMC there are large amplitude variables, with long periods, P> 420 days, which are probably undergoing hot bottom burning, but which are very clearly more luminous than the PL relation (these are visually bright and are likely to be among the first stars discovered in more distant intermediate age populations); (2) in the solar neighbourhood there are short period, P<235 days, red stars which are probably more luminous than the PL relation. Similar short-period red stars, with high luminosities, have not been identified in the Magellanic Clouds.Comment: 8 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie

    Discovery of Interstellar Hydrogen Fluoride

    Get PDF
    We report the first detection of interstellar hydrogen fluoride. Using the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO), we have detected the 121.6973 micron J = 2 - 1 line of HF in absorption toward the far-infrared continuum source Sagittarius B2. The detection is statistically significant at the 13 sigma level. On the basis of our model for the excitation of HF in Sgr B2, the observed line equivalent width of 1.0 nm implies a hydrogen fluoride abundance of 3E-10 relative to H2. If the elemental abundance of fluorine in Sgr B2 is the same as that in the solar system, then HF accounts for ~ 2% of the total number of fluorine nuclei. We expect hydrogen fluoride to be the dominant reservoir of gas-phase fluorine in Sgr B2, because it is formed rapidly in exothermic reactions of atomic fluorine with either water or molecular hydrogen; thus the measured HF abundance suggests a substantial depletion of fluorine onto dust grains. Similar conclusions regarding depletion have previously been reached for the case of chlorine in dense interstellar clouds. We also find evidence at a lower level of statistical significance (~ 5 sigma) for an emission feature at the expected position of the 4(3,2)-4(2,3) 121.7219 micron line of water. The emission line equivalent width of 0.5 nm for the water feature is consistent with the water abundance of 5E-6 relative to H2 that has been inferred previously from observations of the hot core of Sgr B2.Comment: 11 pages (AASTeX using aaspp4.sty) plus 2 figures; to appear in ApJ Letter

    Spitzer Infrared Spectrograph Observations of Magellanic Cloud Planetary Nebulae: the nature of dust in low metallicity circumstellar ejecta

    Full text link
    We present 5 - 40 micron spectroscopy of 41 planetary nebulae (PNe) in the Magellanic Clouds, observed with the Infrared Spectrograph on board the Spitzer Space Telescope. The spectra show the presence of a combination of nebular emission lines and solid-state features from dust, superimposed on the thermal IR continuum. By analyzing the 25 LMC and 16 SMC PNe in our sample we found that the IR spectra of 14 LMC and 4 SMC PNe are dominated by nebular emission lines, while the other spectra show solid-state features. We observed that the solid-state features are compatible with carbon-rich dust grains (SiC, polycyclic aromatic hydrocarbons (PAHs), etc.) in most cases, except in three PNe showing oxygen-rich dust features. The frequency of carbonaceous dust features is generally higher in LMC than in SMC PNe. The spectral analysis allowed the correlations of the dust characteristics with the gas composition and morphology, and the properties of the central stars. We found that: 1) all PNe with carbonaceous dust features have C/O>1, none of these being bipolar or otherwise highly asymmetric; 2) all PNe with oxygen-rich dust features have C/O<1, with probable high mass progenitors if derived from single-star evolution (these PNe are either bipolar or highly asymmetric); 3) the dust temperature tracks the nebular and stellar evolution; and 4) the dust production efficiency depends on metallicity, with low metallicity environments not favoring dust production.Comment: The Astrophysical Journal, in pres

    Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC

    Get PDF
    A radiative transfer code is used to model the spectral energy distributions of 57 mass-losing Asymptotic Giant Branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC) for which ISO spectroscopic and photometric data are available. As a result we derive mass-loss rates and bolometric luminosities. A gap in the luminosity distribution around M_bol = -7.5 mag separates AGB stars from RSGs. The luminosity distributions of optically bright carbon stars, dust-enshrouded carbon stars and dust-enshrouded M-type stars have only little overlap, suggesting that the dust-enshrouded AGB stars are at the very tip of the AGB and will not evolve significantly in luminosity before mass loss ends their AGB evolution. Derived mass-loss rates span a range from Mdot about 10^-7 to 10^-3 M_sun/yr. More luminous and cooler stars are found to reach higher mass-loss rates. The highest mass-loss rates exceed the classical limit set by the momentum of the stellar radiation field, L/c, by a factor of a few due to multiple scattering of photons in the circumstellar dust envelope. Mass-loss rates are lower than the mass consumption rate by nuclear burning, Mdot_nuc, for most of the RSGs. Two RSGs have Mdot >> Mdot_nuc, however, suggesting that RSGs shed most of their stellar mantles in short phases of intense mass loss. Stars on the thermal pulsing AGB may also experience episodes of intensified mass loss, but their quiescent mass-loss rates are usually already higher than Mdot_nuc.Comment: 15 pages, 11 figures. Accepted for publication in Astronomy and Astrophysics Main Journa

    Three-micron spectra of AGB stars and supergiants in nearby galaxies

    Get PDF
    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&

    Further detections of OH masers in carbon stars with silicate features

    Get PDF
    A sample of J-type carbon stars was searched for OH maser emission. The new detection of three OH lines towards two silicate carbon stars is reported. In V778 Cyg, previously known as the main-lines (1665 and 1667 MHz) maser source, the satellite 1612 MHz emission was discovered while in NSV 2814 the main OH lines were detected. The presence of OH maser lines confirms the former suggestion that oxygen-rich material is located in the vicinity (\approx 10151610^{15-16} cm) of silicate carbon stars.Comment: LaTeX2e, 4 pages with 2 figure
    corecore