756 research outputs found

    Accommodating the difference in students’ prior knowledge of cell growth kinetics

    Get PDF
    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal level of knowledge on cell growth kinetics they need to comprehend the content knowledge of the subsequent lectures and pass the exam. The module was organised to offer the subject matter in a differentiated manner, so that students could follow different learning paths. Two student groups were investigated, one consisting of students who had received their prior education abroad and one of students that had not. Exam scores, questionnaires, and logged user data of the two student groups were analysed to discover whether the digital module had the intended effect. The results indicate that students did indeed follow different learning paths. Also, the differences in exam scores between the two student groups that was present before the introduction of the digital module was found to have decreased afterwards. In general, students appreciated the use of the material regardless of their prior education. We therefore conclude that the use of adaptive digital learning material is a possible way to solve the problem of differences in prior education of students entering a course

    The influence of student characteristics on the use of adaptive e-learning material

    Get PDF
    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive elearning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting demographic data and measuring motivation and prior knowledge. We also measured the learning paths students followed and learning strategies they used when working with adaptive e-learning material in a molecular biology course. We then combined these data to study if and how student characteristics relate to the learning paths and strategies they used. We observed that students did follow different learning paths. Gender did not have an effect, but (mainly Dutch) BSc students differed from (international) MSc students in the intrinsic motivation they had and the learning paths and strategies they followed when using the adaptive e-learning materia

    Development and Evaluation of an Adaptive Digital Module on Enzyme Kinetics

    Get PDF
    An adaptive module on basic enzyme kinetics was developed for first- and second-year university students. The module offers more assignments to students who have less knowledge of the theory than to more advanced students. The aim of the research was to investigate what influence students’ backgrounds have on their use and appreciation of this module. Both freshmen and second-year students showed a large variation in the number of assignments they needed to perform in order to finish the module, indicating that the module’s adaptive feature was exploited by all the students. Findings indicated that the prior knowledge was of influence of students’ motivation and perception of difficulty of the modul

    Low-metallicity massive single stars with rotation. II. Predicting spectra and spectral classes of chemically-homogeneously evolving stars

    Full text link
    Context. Metal-poor massive stars are supposed to be progenitors of certain supernovae, gamma-ray bursts and compact object mergers, potentially contributing to the early epochs of the Universe with their strong ionizing radiation. However, they remain mainly theoretical as individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the SMC. Aims. This work aims at exploring what our state-of-the-art theories of stellar evolution combined with those of stellar atmospheres predict about a certain type of metal-poor (0.02 Z_{\odot}) hot massive stars, the chemically homogeneously evolving ones, called TWUIN stars. Methods. Synthetic spectra corresponding to a broad range in masses (20-130 M_{\odot}) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage were computed. Results. We find that TWUIN stars show almost no emission lines during most of their {core hydrogen-burning} lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission and even some metal lines (oxygen and carbon, but still almost no nitrogen) show up. Mass loss and clumping play a significant role in line-formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early O type star observed in a low-metallicity galaxy could be the outcome of chemically homogeneous evolution - and therefore the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe due to their being hot without showing prominent emission lines during the majority of their lifetimes.Comment: Accepted by Astronomy and Astrophysics. In Pres

    Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks

    Get PDF
    Several studies have shown that human motor behavior can be successfully described using optimal control theory, which describes behavior by optimizing the trade-off between the subject's effort and performance. This approach predicts that subjects reach the goal exactly at the final time. However, another strategy might be that subjects try to reach the target position well before the final time to avoid the risk of missing the target. To test this, we have investigated whether minimizing the control effort and maximizing the performance is sufficient to describe human motor behavior in time-constrained motor tasks. In addition to the standard model, we postulate a new model which includes an additional cost criterion which penalizes deviations between the position of the effector and the target throughout the trial, forcing arrival on target before the final time. To investigate which model gives the best fit to the data and to see whether that model is generic, we tested both models in two different tasks where subjects used a joystick to steer a ball on a screen to hit a target (first task) or one of two targets (second task) before a final time. Noise of different amplitudes was superimposed on the ball position to investigate the ability of the models to predict motor behavior for different levels of uncertainty. The results show that a cost function representing only a trade-off between effort and accuracy at the end time is insufficient to describe the observed behavior. The new model correctly predicts that subjects steer the ball to the target position well before the final time is reached, which is in agreement with the observed behavior. This result is consistent for all noise amplitudes and for both tasks

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic

    Marine sponges as pharmacy

    Get PDF
    Marine sponges have been considered as a gold mine during the past 50 years, with respect to the diversity of their secondary metabolites. The biological effects of new metabolites from sponges have been reported in hundreds of scientific papers, and they are reviewed here. Sponges have the potential to provide future drugs against important diseases, such as cancer, a range of viral diseases, malaria, and inflammations. Although the molecular mode of action of most metabolites is still unclear, for a substantial number of compounds the mechanisms by which they interfere with the pathogenesis of a wide range of diseases have been reported. This knowledge is one of the key factors necessary to transform bioactive compounds into medicines. Sponges produce a plethora of chemical compounds with widely varying carbon skeletons, which have been found to interfere with pathogenesis at many different points. The fact that a particular disease can be fought at different points increases the chance of developing selective drugs for specific target
    corecore