502 research outputs found

    A new flaring high energy gamma-ray source

    Full text link
    We report the detection of a new gamma-ray source in the Fermi-LAT sky using a source detection tool based on the Minimal Spanning Tree algorithm. The source, not reported in previous LAT catalogues but very recently observed in the X-rays and optical bands, is characterized by an increasing gamma-ray activity in 2012 June-September, reaching a weekly peak flux of (3.3+-0.6)*10^-7 photons cm^-2 s^-1. A search for a possible counterpart provides indication that it can be associated with the radio source NVSS J141828+354250 whose optical SDSS colours are typical of a blazar.Comment: 4 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies

    Full text link
    We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of 48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample (LBAS) data taking period, combining Fermi and Swift data with radio NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs, sampling both the low and the high energy peak of the blazars broad band emission, we were able to apply a diagnostic tool based on the estimate of the peak frequencies of the synchrotron (S) and Inverse Compton (IC) components. Our analysis shows a Fermi blazars' divide based on the peak frequencies of the SED. The robust result is that the Synchrotron Self Compton (SSC) region divides in two the plane were we plot the peak frequency of the synchrotron SED vs the typical Lorentz factor of the electrons most contributing to the synchrotron emission and to the inverse Compton process. Objects within or below this region, radiating likely via the SSC process, are high-frequency-peaked BL Lac object (HBL), or low/intermediate-frequency peaked BL Lac object (LBL/IBL). All of the IBLs/LBLs within or below the SSC region are not Compton dominated. The objects lying above the SSC region, radiating likely via the External radiation Compton (ERC) process, are Flat Spectrum Radio Quasars and IBLs/LBLs. All of the IBLs/LBLs in the ERC region show a significant Compton dominance.Comment: Contribution to the Workshop SciNeGHe 2009/Gamma-ray Physics in the LHC era (Assisi - Italy, Oct. 7-9 2009

    Stochastic Acceleration and the Evolution of Spectral Distributions in SSC Sources: A Self Consistent Modeling of Blazars' Flares

    Full text link
    The broad-band spectral distributions of non-thermal sources, such as those of several known blazars, are well described by a log-parabolic fit. The second degree term in these fits measures the curvature in the spectrum. In this paper we investigate whether the curvature parameter observed in the spectra of the synchrotron emission can be used as a fingerprint of stochastic acceleration. As a first approach we use the multiplicative Central Limit theorem to show how fluctuations in the energy gain result in the broadening of the spectral shape, introducing a curvature into the energy distribution. Then, by means of a Monte-Carlo description, we investigate how the curvature produced in the electron distribution is linked to the diffusion in momentum space. To get a more generic description we turn to the diffusion equation in momentum space. We first study some "standard" scenarios, in order to understand the conditions that make the curvature in the spectra significant, and the relevance of the cooling over the acceleration process. We try to quantify the correlation between the curvature and the diffusive process in the pre-equilibrium stage, and investigate how the transition between the Klein-Nishina and the Thompson regime, in Inverse Compton cooling, can determine the curvature in the distribution at the equilibrium. We apply these results to some observed trends, such as the anticorrelation between the peak energy and the curvature term observed in the spectra of Mrk 421, and a sample of BL Lac objects whose synchrotron emission peaks at X-ray energies.Comment: 16 pages, 13 figures, Accepted for publication in The Astrophysical Journa

    Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle

    Get PDF
    Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation

    Log-parabolic spectra and particle acceleration in blazars. III: SSC emission in the TeV band from Mkn 501

    Full text link
    Curved broad-band spectral distributions of non-thermal sources like blazars are described well by a log-parabolic (LP) law where the second degree term measures the curvature. LP energy spectra can be obtained for relativistic electrons by means of a statistical acceleration mechanism whose probability of acceleration depends on energy. In this paper we compute the spectra radiated by an electron population via synchrotron (S) and Synchro-Self Compton(SSC) processes to derive the relations between the LP parameters. These spectra were obtained by means of an accurate numerical code. We found that the ratio between the curvature parameters of the S spectrum to that of the electrons is equal to about 0.2 instead of 0.25, the value foreseen in the delta approximation. Inverse Compton spectra are also intrinsically curved and can be approximated by a log-parabola only in limited ranges. The curvature parameter, estimated around the SED peak, may vary from a lower value than that of the S spectrum up to that of emitting electrons depending on whether the scattering is in the Thomson or in the Klein-Nishina regime. We applied this analysis to computing the SSC emission from the BL Lac object Mkn 501 during the large flare of April 1997. We fit simultaneous BeppoSAX and CAT data and reproduced intensities and spectral curvatures of both components with good accuracy. The large curvature observed in the TeV range was found to be mainly intrinsic, and therefore did not require a large pair production absorption against the extragalactic background. We regard this finding as an indication that the Universe is more transparent at these energies than previously assumed by several models found in the literature. This conclusion is supported by recent detection of two relatively high redshift blazars with H.E.S.S.Comment: Comments: 12 pages, 11 figures. Accepted for publication in the Astronomy and Astrophysic

    Variability of the Spectral Energy Distribution of the Blazar S5 0716+714

    Full text link
    The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/or the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.Comment: 4 pages, 3 figures, contributed talk presented at the conference Multifrequency Variability of Blazars, Guangzhou, China, September 22-24, 2010. To appear in Journal of Astrophysics and Astronomy (JAA

    No efficacy of transcranial direct current stimulation on chronic migraine with medication overuse : a double blind, randomised clinical trial

    Get PDF
    Background: Transcranial direct current stimulation was suggested to provide beneficial effects in chronic migraine, a condition often associated with medication overuse for which no long-term therapy is available. Methods: We conducted a randomised controlled trial to assess long-term efficacy of transcranial direct current stimulation. Adults diagnosed with chronic migraine and medication overuse were assigned to receive in a 1:1:1 ratio anodal, cathodal, or sham transcranial direct current stimulation daily for five consecutive days, along with standardised drug withdrawal protocol. Primary outcome was 50% reduction of days of headache per month at 12 months. Co-secondary outcomes were 50% reduction of days of headache per month at 6 months, reduction of analgesic intake per month, and change in disability and quality of life, catastrophising, depression, state and trait anxiety, dependence attitude and allodynia intensity. Patients were not allowed to take any migraine prophylaxis drug for the entire study period. Results: We randomly allocated 135 patients to anodal (44), cathodal (45), and sham (46) transcranial direct current stimulation. At 6 and 12 months, the percentage of reduction of days of headache and number of analgesics per month ranged between 48.5% and 64.7%, without differences between transcranial direct current stimulation (cathodal, anodal, or the results obtained from the two arms of treatment, anodal plus cathodal) and sham. Catastrophising attitude significantly reduced at 12 months in all groups. There was no difference for the other secondary outcomes. Conclusions: Transcranial direct current stimulation did not influence the short and long-term course of chronic migraine with medication overuse after acute drug withdrawal. Behavioral and educational measures and support for patients' pain management could provide long-term improvement and low relapse rate. Trial registration number NCT04228809

    SWIFT observations of TeV BL Lac objects

    Full text link
    Context: We present the results of a set of observations of nine TeV detected BL Lac objects performed by the XRT and UVOT detectors on board the Swift satellite between March and December 2005. Aims: We are mainly interested in measuring the spectral parameters, and particularly the intrinsic curvature in the X-ray band. Methods: We perform X-ray spectral analysis of observed BL Lac TeV objects using either a log-parabolic or a simple power-law model . Results: We found that many of the objects in our sample do show significant spectral curvature, whereas those having the peak of the spectral energies distribution at energies lower than ~0.1 keV show power law spectra. In these cases, however, the statistics are generally low thus preventing a good estimate of the curvature. Simultaneous UVOT observations are important to verify how X-ray spectra can be extrapolated at lower frequencies and to search for multiple emission components. Conclusions: The results of our analysis are useful for the study of possible signatures of statistical acceleration processes predicting intrinsically curved spectra and for modelling the SED of BL Lacertae objects up to TeV energies where a corresponding curvature is likely to be present.Comment: 10 pages, 7 figures. Accepted for publication in the Astronomy and Astrophysic
    • …
    corecore