4 research outputs found
Former Socialist Countries Open their Past to Europe (SCOPE)
The project “Former Socialist Countries Open their Past to Europe” (SCOPE) focuses on gathering cultural
heritage (CH) in the form of documents and personal testimonies from the former socialist countries (FSC) in
the Danube Region. The main goals are to create an extensive database (DB) of the publicly available and
newly collected documents, and to develop a user-friendly application for data search and analysis. The collection
of available documents will be examined by group of historians to select significant CH movements
on a specific geographical area. Innovative tools, SCOPE website and application, will provide effective
research and analysis of documents in a new, standardized database. SCOPE tools allow quick searching of
all available documents using keywords or phrases; classification of results according to geographical position/
dates/types/historical impact; and graphical illustration of activities against the socialist/communist
regimes through the defined period of time. The novelty of the project is the use of the ‘citizen science’
approach to acquire personal testimonies of cultural opposition movements during the communist period
through SCOPE tools. An interactive part of SCOPE application will collect users’ feedback in order to analyze
if the documents serve the purpose of awareness raising on the anti-communist past among EU citizens
Detection of copy/paste forhery in digital images by analysis of statistical properties of images
Prisutnost velikog broja digitalnih slika s izmijenjenim sadržajem zahtjeva razvoj metoda za identifikaciju autentičnosti slika. Jedan od osnovnih načina izmjene sadržaja je kopiranje dijela slike na drugu lokaciju u istoj slici (eng. copy-paste forgery). U ovom radu opisana je nova metoda za detekciju kopiranih područja na slici uporabom staničnog automata (eng. cellular automata, CA) i lokalnog binarnog uzorka (eng. local binary pattern, LBP). Razvijena metoda temelji se na podjeli slike u preklapajuće blokove, koji se zatim opisuju sažetim vektorom značajki. Vektor značajki predstavlja teksturu bloka u obliku lokalne promjene intenziteta elemenata slike. Generiranje vektora značajki se obavlja na način da se za svaki element slike u bloku definira susjedstvo te se binarizira uporabom lokalnog binarnog uzorka. Binarizirano susjedstvo koristi se za određivanje pravila staničnog automata koje opisuje promjenu intenziteta elementa u susjedstvu. Ponavljanjem ovog procesa za svaki element bloka daje uvid u teksturu bloka, opisanu jednostavnim binarnim nizom. Skup vektora značajki za cijelu sliku analizira se uporabom kd-stabla te se između sličnih blokova pronalazi skup dupliciranih blokova primjenom prethodno definiranih uvjeta. Metoda je proširena na posebne slučajeve izmijene slike kada je kopirano područje transformirano rotacijom ili skaliranjem te kada je slika naknadno obrađena primjenom JPEG kompresije, zamućivanja slike ili dodavanjem šuma. Nadalje, razvijena je metoda detekcije izmjena video sekvenci temeljena na istom pristupu u slučajevima kada je izmijenjen niz okvira. Rezultati testiranja pokazuju da predložena metoda postiže bolju točnost detekcije od trenutno poznatih metoda.Due to availability of numerous forged digital images, there is a need for development of a methods for identification of image authenticity. One of common image forgery methods is copy-paste forgery, where part of an image is copied at a new location in the same image. A new method for copy-paste forgery, based on cellular automata (CA) and local binary pattern (LBP), is proposed in this thesis. Developed method divides image into overlapping blocks and describes every block with reduced feature vector. Feature vector represents block's texture in a form of local changes in pixels intensity values. Generation of feature vectors is done by defining CA neighbourhood, and change it to binary values using LBP, for each pixel in a block. Binary neighbourhood is used to define CA rules that describe changes of intensity values in neighbourhood. Repeating of this process for every element in a block result in texture description in a form of simple binary array. Set of feature vectors for a whole image is analysed by kd-tree and duplicated block are identified from set of similar blocks using predefined rules. Method is extended to special cases of image forgery when copied area is transformed (by rotating or scaling) and when image is post-processed (by JPEG compressing, blurring and noise addition). Furthermore, developed method is applied to video copy-paste forgery when a set of frames is pasted to a new location in a sequence. Testing results show that proposed method accomplish better accuracy than existing methods
Detection of copy/paste forhery in digital images by analysis of statistical properties of images
Prisutnost velikog broja digitalnih slika s izmijenjenim sadržajem zahtjeva razvoj metoda za identifikaciju autentičnosti slika. Jedan od osnovnih načina izmjene sadržaja je kopiranje dijela slike na drugu lokaciju u istoj slici (eng. copy-paste forgery). U ovom radu opisana je nova metoda za detekciju kopiranih područja na slici uporabom staničnog automata (eng. cellular automata, CA) i lokalnog binarnog uzorka (eng. local binary pattern, LBP). Razvijena metoda temelji se na podjeli slike u preklapajuće blokove, koji se zatim opisuju sažetim vektorom značajki. Vektor značajki predstavlja teksturu bloka u obliku lokalne promjene intenziteta elemenata slike. Generiranje vektora značajki se obavlja na način da se za svaki element slike u bloku definira susjedstvo te se binarizira uporabom lokalnog binarnog uzorka. Binarizirano susjedstvo koristi se za određivanje pravila staničnog automata koje opisuje promjenu intenziteta elementa u susjedstvu. Ponavljanjem ovog procesa za svaki element bloka daje uvid u teksturu bloka, opisanu jednostavnim binarnim nizom. Skup vektora značajki za cijelu sliku analizira se uporabom kd-stabla te se između sličnih blokova pronalazi skup dupliciranih blokova primjenom prethodno definiranih uvjeta. Metoda je proširena na posebne slučajeve izmijene slike kada je kopirano područje transformirano rotacijom ili skaliranjem te kada je slika naknadno obrađena primjenom JPEG kompresije, zamućivanja slike ili dodavanjem šuma. Nadalje, razvijena je metoda detekcije izmjena video sekvenci temeljena na istom pristupu u slučajevima kada je izmijenjen niz okvira. Rezultati testiranja pokazuju da predložena metoda postiže bolju točnost detekcije od trenutno poznatih metoda.Due to availability of numerous forged digital images, there is a need for development of a methods for identification of image authenticity. One of common image forgery methods is copy-paste forgery, where part of an image is copied at a new location in the same image. A new method for copy-paste forgery, based on cellular automata (CA) and local binary pattern (LBP), is proposed in this thesis. Developed method divides image into overlapping blocks and describes every block with reduced feature vector. Feature vector represents block's texture in a form of local changes in pixels intensity values. Generation of feature vectors is done by defining CA neighbourhood, and change it to binary values using LBP, for each pixel in a block. Binary neighbourhood is used to define CA rules that describe changes of intensity values in neighbourhood. Repeating of this process for every element in a block result in texture description in a form of simple binary array. Set of feature vectors for a whole image is analysed by kd-tree and duplicated block are identified from set of similar blocks using predefined rules. Method is extended to special cases of image forgery when copied area is transformed (by rotating or scaling) and when image is post-processed (by JPEG compressing, blurring and noise addition). Furthermore, developed method is applied to video copy-paste forgery when a set of frames is pasted to a new location in a sequence. Testing results show that proposed method accomplish better accuracy than existing methods
Detection of copy/paste forhery in digital images by analysis of statistical properties of images
Prisutnost velikog broja digitalnih slika s izmijenjenim sadržajem zahtjeva razvoj metoda za identifikaciju autentičnosti slika. Jedan od osnovnih načina izmjene sadržaja je kopiranje dijela slike na drugu lokaciju u istoj slici (eng. copy-paste forgery). U ovom radu opisana je nova metoda za detekciju kopiranih područja na slici uporabom staničnog automata (eng. cellular automata, CA) i lokalnog binarnog uzorka (eng. local binary pattern, LBP). Razvijena metoda temelji se na podjeli slike u preklapajuće blokove, koji se zatim opisuju sažetim vektorom značajki. Vektor značajki predstavlja teksturu bloka u obliku lokalne promjene intenziteta elemenata slike. Generiranje vektora značajki se obavlja na način da se za svaki element slike u bloku definira susjedstvo te se binarizira uporabom lokalnog binarnog uzorka. Binarizirano susjedstvo koristi se za određivanje pravila staničnog automata koje opisuje promjenu intenziteta elementa u susjedstvu. Ponavljanjem ovog procesa za svaki element bloka daje uvid u teksturu bloka, opisanu jednostavnim binarnim nizom. Skup vektora značajki za cijelu sliku analizira se uporabom kd-stabla te se između sličnih blokova pronalazi skup dupliciranih blokova primjenom prethodno definiranih uvjeta. Metoda je proširena na posebne slučajeve izmijene slike kada je kopirano područje transformirano rotacijom ili skaliranjem te kada je slika naknadno obrađena primjenom JPEG kompresije, zamućivanja slike ili dodavanjem šuma. Nadalje, razvijena je metoda detekcije izmjena video sekvenci temeljena na istom pristupu u slučajevima kada je izmijenjen niz okvira. Rezultati testiranja pokazuju da predložena metoda postiže bolju točnost detekcije od trenutno poznatih metoda.Due to availability of numerous forged digital images, there is a need for development of a methods for identification of image authenticity. One of common image forgery methods is copy-paste forgery, where part of an image is copied at a new location in the same image. A new method for copy-paste forgery, based on cellular automata (CA) and local binary pattern (LBP), is proposed in this thesis. Developed method divides image into overlapping blocks and describes every block with reduced feature vector. Feature vector represents block's texture in a form of local changes in pixels intensity values. Generation of feature vectors is done by defining CA neighbourhood, and change it to binary values using LBP, for each pixel in a block. Binary neighbourhood is used to define CA rules that describe changes of intensity values in neighbourhood. Repeating of this process for every element in a block result in texture description in a form of simple binary array. Set of feature vectors for a whole image is analysed by kd-tree and duplicated block are identified from set of similar blocks using predefined rules. Method is extended to special cases of image forgery when copied area is transformed (by rotating or scaling) and when image is post-processed (by JPEG compressing, blurring and noise addition). Furthermore, developed method is applied to video copy-paste forgery when a set of frames is pasted to a new location in a sequence. Testing results show that proposed method accomplish better accuracy than existing methods