79 research outputs found

    Spectral characteristics of waves and particles in the model of cyclotron wave-particle interactions near plasmapause

    No full text
    International audienceFurther analysis of energetic electron precipitation at the evening sector of magnetosphere is performed. In the framework of the quantitative model of cyclotron wave-particle interactions developed in the previous Pasmanik et al. paper, the case of finite spread over energies of initial energetic electron distribution is studied. The solution for distribution function of energetic electron is found. The energetic spectrum of trapped and precipitating electrons and whistler wave spectrum are analysed

    Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    Get PDF
    International audienceSimultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations

    Electromagnetic cyclotron instabilities in bi-Kappa distributed plasmas : a quasilinear approach

    Get PDF
    Anisotropic bi-Kappa distributed plasmas, as encountered in the solar wind and planetary magnetospheres,are susceptible to a variety of kinetic instabilities including the cyclotron instabilities driven by an excess ofperpendicular temperature T⊄ > T∄ (where ∄, ⊄ denote directions relative to the mean magnetic field). Theseinstabilities have been extensively investigated in the past, mainly limiting to a linear stability analysis. Abouttheir quasilinear (weakly nonlinear) development some insights have been revealed by numerical simulationsusing PIC and Vlasov solvers. This paper presents a self-consistent analytical approach, which provides forboth the electron and proton cyclotron instabilities an extended picture of the quasilinear time evolution ofthe anisotropic temperatures as well as the wave energy densities

    Frequencies of wave packets of whistler-mode chorus inside its source region: a case study

    Get PDF
    Whistler-mode chorus is a structured wave emission observed in the Earth's magnetosphere in a frequency range from a few hundreds of Hz to several kHz. We investigate wave packets of chorus using high-resolution measurements recorded by the WBD instrument on board the four Cluster spacecraft. A night-side chorus event observed during geomagnetically disturbed conditions is analyzed. We identify lower and upper frequencies for a large number of individual chorus wave packets inside the chorus source region. We investigate how these observations are related to the central position of the chorus source which has been previously estimated from the Poynting flux measurements. We observe typical frequency bandwidths of chorus of approximately 10% of the local electron cyclotron frequency. Observed time scales are around 0.1 s for the individual wave packets. Our results indicate a lower occurrence probability for lower frequencies in the vicinity of the central position of the source compared to measurements recorded closer to the outer boundaries of the source. This is in agreement with recent research based on the backward wave oscillator theory
    • 

    corecore