113 research outputs found

    A High-Resolution Hubble Space Telescope Study of Apparent Lyman Continuum Leakers at z3z\sim3

    Get PDF
    We present U336V606J125H160U_{336}V_{606}J_{125}H_{160} follow-up HSTHST observations of 16 z3z\sim3 candidate LyC emitters in the HS1549+1919 field. With these data, we obtain high spatial-resolution photometric redshifts of all sub-arcsecond components of the LyC candidates in order to eliminate foreground contamination and identify robust candidates for leaking LyC emission. Of the 16 candidates, we find one object with a robust LyC detection that is not due to foreground contamination. This object (MD5) resolves into two components; we refer to the LyC-emitting component as MD5b. MD5b has an observed 1500\AA\ to 900\AA\ flux-density ratio of (FUV/FLyC)obs=4.0±2.0(F_{UV}/F_{LyC})_{obs}=4.0\pm2.0, compatible with predictions from stellar population synthesis models. Assuming minimal IGM absorption, this ratio corresponds to a relative (absolute) escape fraction of fesc,relMD5b=75100f_{esc,rel}^{MD5b}=75-100% (fesc,absMD5b=1419f_{esc,abs}^{MD5b}=14-19%). The stellar population fit to MD5b indicates an age of 50\lesssim50Myr, which is in the youngest 10% of the HSTHST sample and the youngest third of typical z3z\sim3 Lyman break galaxies, and may be a contributing factor to its LyC detection. We obtain a revised, contamination-free estimate for the comoving specific ionizing emissivity at z=2.85z=2.85, indicating (with large uncertainties) that star-forming galaxies provide roughly the same contribution as QSOs to the ionizing background at this redshift. Our results show that foreground contamination prevents ground-based LyC studies from obtaining a full understanding of LyC emission from z3z\sim3 star-forming galaxies. Future progress in direct LyC searches is contingent upon the elimination of foreground contaminants through high spatial-resolution observations, and upon acquisition of sufficiently deep LyC imaging to probe ionizing radiation in high-redshift galaxies.Comment: 31 pages, 5 tables, 19 figures. Accepted to ApJ. Version with full-resolution figures is available at: http://www.astro.ucla.edu/~aes/Mostardi_HST_LyC.pd

    Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus)

    Full text link
    Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic and limbic associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis, and the posterodorsal medial amygdala (MEApd) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in medial amygdala and the bed nucleus of the stria terminalis were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains

    Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    Get PDF
    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior
    corecore