922 research outputs found

    Comparison of Nitrogen Incorporation in Tholins Produced by FUV Irradiation and Spark Discharge

    Get PDF
    The discovery of very heavy ions (Coates et al., 2007) in Titan's thermosphere has dramatically altered our understanding of the processes involved in the formation of the complex organic aerosols that comprise Titan's characteristic haze. Before Cassini's arrival, it was believed that aerosol production began in the stratosphere where the chemical processes were predominantly initiated by FUV radiation. This understanding guided the design of Titan atmosphere simulation experiments. However, the energy environment of the thermosphere is significantly different than the stratosphere; in particular there is a greater flux of EUV photons and energetic particles available to initiate chemical reactions, including the destruction of N2. in the upper atmosphere. Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), we have obtained in situ composition measurements of aerosol particles (so'called "tholins") produced in CH4/N2 gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) (Trainer et al., 2012) or a spark discharge. A comparison of the composition of tholins produced using the two different energy sources will be presented, in particular with regard to the variation in nitrogen content of the two types of tholin. Titan's aerosols are known to contain significant amounts of nitrogen (Israel et al., 2005) and therefore understanding the role of nitrogen in the aerosol chemistry is important to further our knowledge of the formation and evolution of aerosols in Titan's atmosphere

    Titan Aerosol Analogs from Aromatic Precursors: Comparisons to Cassini CIRS Observations in the Thermal Infrared

    Get PDF
    Since Cassini's arrival at Titan, ppm levels of benzene (C6H6) as well as large positive ions, which may be polycyclic aromatic hydrocarbons (PAHs). have been detected in the atmosphere. Aromatic molecules. photolytically active in the ultraviolet, may be important in the formation of the organic aerosol comprising the Titan haze layer even when present at low mixing ratios. Yet there have not been laboratory simulations exploring the impact of these molecules as precursors to Titan's organic aerosol. Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) in the far-infrared (far-IR) between 560 and 20/cm (approx. 18 to 500 microns) and in the mid-infrared (mid-IR) between 1500 and 600/cm (approx. 7 to 17 microns) have been used to infer the vertical variations of Titan's aerosol from the surface to an altitude of 300 km in the far-IR and between 150 and 350 km in the mid-IR. Titan's aerosol has several observed emission features which cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs, including a broad far-IR feature centered approximately at 140/cm (71 microns)

    Aromatic Structure in Simulates Titan Aerosol

    Get PDF
    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are demonstrated in the aerosol mass spectra shown in Figure 2. The aromatic aerosol also demonstrates strong chemical reactivity when exposed to laboratory air, indicating substantial stored chemical potential. Oxidatoin and solubility studies wil be presented and implicatoins for prebiotic chemistry o nTitan will be discussed

    Determination of urban volatile organic compound emission ratios and comparison with an emissions database

    Get PDF
    During the NEAQS-ITCT2k4 campaign in New England, anthropogenic VOCs and CO were measured downwind from New York City and Boston. The emission ratios of VOCs relative to CO and acetylene were calculated using a method in which the ratio of a VOC with acetylene is plotted versus the photochemical age. The intercept at the photochemical age of zero gives the emission ratio. The so determined emission ratios were compared to other measurement sets, including data from the same location in 2002, canister samples collected inside New York City and Boston, aircraft measurements from Los Angeles in 2002, and the average urban composition of 39 U.S. cities. All the measurements generally agree within a factor of two. The measured emission ratios also agree for most compounds within a factor of two with vehicle exhaust data indicating that a major source of VOCs in urban areas is automobiles. A comparison with an anthropogenic emission database shows less agreement. Especially large discrepancies were found for the C2-C4 alkanes and most oxygenated species. As an example, the database overestimated toluene by almost a factor of three, which caused an air quality forecast model (WRF-CHEM) using this database to overpredict the toluene mixing ratio by a factor of 2.5 as well. On the other hand, the overall reactivity of the measured species and the reactivity of the same compounds in the emission database were found to agree within 30%. Copyright 2007 by the American Geophysical Union

    In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    Get PDF
    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites

    Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    Get PDF
    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments

    Stable Isotope Fractionation in Titan Aerosol Formation

    Get PDF
    Stable isotope ratio measurements are a powerful tool used to understand both ancient and modern planetary processes. Instruments on the Cassini- Huygens spacecraft along with ground-based observations have measured several isotope pairs, including C-13/C-12 and N-15/N-14, in Titan's atmosphere. This includes isotopic measurements of the major atmospheric species, CH4 and N2, along with HCN, HC3N, C2H2. C2H6 and C4H2. However, the isotopic fractionation of Titan's organic aerosol has not conclusively been measured and therefore the effect of aerosol formation as an isotopic fractionation pathway in Titan's atmosphere has not been considered. Laboratory studies have measured the carbon and/or nitrogen isotopic fractionation of Titan aerosol analogs. [18] found that the carbon fractionation of photochemical organic aerosol analogs are more enriched in C-13. This enrichment in the aerosol analogs is opposite of what is predicted for photochemical products by the kinetic isotope effect. Additionally, both [16] and [18] found that the nitrogen fractionation in the organic aerosol analogs are opposite of what is observed in Titan's atmospheric N2 and HCN, with the aerosol analogs being a light nitrogen sink. Here we monitor the gas phase during photochemical aerosol analog production as a function of reaction time. In a recirculation experiment, the isotopic fractionation of carbon within the gas-phase products is measured as the CH4 reservoir is depleted. This allows us to monitor the isotopic fractionation pathway during photochemical aerosol analog formation

    Magnetic surface reconstruction in the van der Waals antiferromagnet Fe1+xTe

    Get PDF
    We acknowledge financial support from the EPSRC (EP/R031924/1 and EP/R032130/1) and NIST Center for Neutron Research. C.H. acknowledges support by the Austrian Science Fund (FWF) Project No. P32144-N36 and the VSC4 of the Vienna University of TechnologyFe1+xTe is a two-dimensional van der Waals antiferromagnet that becomes superconducting on anion substitution on the Te site. The properties of the parent phase of Fe1+xTe are sensitive to the amount of interstitial iron situated between the iron-tellurium layers. Fe1+xTe displays collinear magnetic order coexisting with low-temperature metallic resistivity for small concentrations of interstitial iron x and helical magnetic order for large values of x. While this phase diagram has been established through scattering [see, for example, E. E. Rodriguez et al., Phys. Rev. B 84, 064403 (2011); S. Rossler et al., ibid. 84, 174506 (2011)], recent scanning tunneling microscopy measurements [C. Trainer et al., Sci. Adv. 5, eaav3478 (2019)] have observed a different magnetic structure for small interstitial iron concentrations x with a significant canting of the magnetic moments along the crystallographic c axis of θ = 28° ± 3°. In this paper, we revisit themagnetic structure of Fe1.09Te using spherical neutron polarimetry and scanning tunneling microscopy to search for this canting in the bulk phase, and we compare surface and bulk magnetism. The results show that the bulk magnetic structure of Fe1.09Te is consistent with collinear in-plane order (θ= 0 with an error of ∼ 5°). Comparison with scanning tunneling microscopy on a series of Fe1+xTe samples reveals that the surface exhibits a magnetic surface reconstruction with a canting angle of the spins of θ = 29.8°. We suggest that this is a consequence of structural relaxation of the surface layer resulting in an out-of-plane magnetocrystalline anisotropy. The magnetism in Fe1+xTe displays different properties at the surface when the symmetry constraints of the bulk are removed.Publisher PDFPeer reviewe
    corecore