201 research outputs found

    The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017

    Full text link
    CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies. AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum. METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission. RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip

    Localizing the γ-ray emitting region in the blazar TXS 2013+370

    Get PDF
    Aims. The γ-ray production mechanism and its localization in blazars are still a matter of debate. The main goal of this paper is to constrain the location of the high-energy emission in the blazar TXS 2013+370 and to study the physical and geometrical properties of the inner jet region on sub-pc scales. Methods. TXS 2013+370 was monitored during 2002–2013 with VLBI at 15, 22, 43, and 86 GHz, which allowed us to image the jet base with an angular resolution of ≥0.4 pc. By employing CLEAN imaging and Gaussian model-fitting, we performed a thorough kinematic analysis at multiple frequencies, which provided estimates of the jet speed, orientation, and component ejection times. Additionally, we studied the jet expansion profile and used the information on the jet geometry to estimate the location of the jet apex. VLBI data were combined with single-dish measurements to search for correlated activity between the radio, mm, and γ-ray emission. For this purpose, we employed a cross-correlation analysis, supported by several significance tests. Results. The high-resolution VLBI imaging revealed the existence of a spatially bent jet, described by co-existing moving emission features and stationary features. New jet features, labeled as A1, N, and N1, are observed to emerge from the core, accompanied by flaring activity in radio/mm- bands and γ-rays. The analysis of the transverse jet width profile constrains the location of the mm core to lie ≤2 pc downstream of the jet apex, and also reveals the existence of a transition from parabolic to conical jet expansion at a distance of ∼54 pc from the core, corresponding to ∼1.5 × 106 Schwarzschild radii. The cross-correlation analysis of the broad-band variability reveals a strong correlation between the radio-mm and γ-ray data, with the 1 mm emission lagging ∼49 days behind the γ-rays. Based on this, we infer that the high energy emission is produced at a distance of the order of ∼1 pc from the jet apex, suggesting that the seed photon fields for the external Compton mechanism originate either in the dusty torus or in the broad-line region

    The WISSH QSOs project IX. Cold gas content and environment of luminous QSOs at z~2.4-4.7

    Get PDF
    Sources at the brightest end of QSO luminosity function during the peak epoch of star formation and black hole accretion (z~2-4, i.e. Cosmic noon) are privileged sites to study the feeding & feedback cycle of massive galaxies. We perform the first systematic study of cold gas properties in the most luminous QSOs, by characterising their host-galaxies and environment. We analyse ALMA, NOEMA and JVLA observations of FIR continuum, CO and [CII] emission lines in eight QSOs (LBol>3×1047L_{\rm Bol}>3\times10^{47} erg/s) from the WISSH sample at z~2.4-4.7. We report a 100% emission line detection rate and a 80% detection rate in continuum emission, and we find CO emission to be consistent with the steepest CO ladders observed so far. Sub-mm data reveal presence of (one or more) bright companion galaxies around 80% of WISSH QSOs, at projected distances of 6-130 kpc. We observe a variety of sizes for the molecular gas reservoirs (1.7-10 kpc), associated with rotating disks with disturbed kinematics. WISSH QSOs typically show lower CO luminosity and higher star formation efficiency than FIR matched, z~0-3 main-sequence galaxies, implying that, given the observed SFR ~170-1100 MM_\odot/yr, molecular gas is converted into stars on <50 Myr. Most targets show extreme dynamical to black-hole mass ratios Mdyn/MBH310M_{\rm dyn}/M_{\rm BH}\sim3-10, two orders of magnitude smaller than local relations. The molecular gas fraction in WISSH hosts is lower by a factor of ~10-100 than in star forming galaxies with similar MM_*. WISSH QSOs undergo an intense growth phase of both the central SMBH and host-galaxy. They pinpoint high-density sites where giant galaxies assemble and mergers play a major role in the build-up of the final host-galaxy mass. The observed low molecular gas fraction and short depletion timescale are likely due to AGN feedback, as traced by fast AGN-driven ionised outflows in all our targets.Comment: Accepted for publication in A&

    Ethics-in-practice in fragile contexts: research in education for displaced persons, refugees and asylum seekers

    Get PDF
    The rising numbers of forcibly displaced peoples on the move globally, and the challenges with providing access to education, reflects the shifting and complex times that we live in. Even though there has been a proliferation in educational research in the context of forced migration, in line with the increasing number of forced migrants, there has not been a commensurate focus on unpicking the increasingly complex ethical conditions within which researchers and participants operate. To examine this issue, the article provides three narrated accounts by researchers in this field and explores the interaction of researcher and researcher-author voice to critically appraise their research experience and identify critical reflections of understanding of ethics-in-practice in fragile contexts. These narratives are framed by the CERD ethical appraisal framework which explores ethical thinking through four ethical lenses – Consequential, Ecological, Relational and Deontological. The article contributes to a deeper understanding of ethics-in-practice as a central dimension in educational research. The implications of this work show how one-size-fits-all approach to ethical appraisal is inappropriate for a socially just educational research. This work also illustrates the importance of attending to relationships and voice of the forcibly displaced, both of which are often lacking in educational research in fragile contexts

    Resolving the inner parsec of the blazar J1924-2914 with the Event Horizon Telescope

    Full text link
    The blazar J1924-2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic Center's black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 μ\muas resolution of the EHT. J1924-2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5-11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100-parsec scales. We combine the multi-frequency images of J1924-2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90 degrees between 2.3 and 230 GHz. Linearly polarized intensity images of J1924-2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core

    The ngEHT Analysis Challenges

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The next-generation Event Horizon Telescope (ngEHT) will be a significant enhancement of the Event Horizon Telescope (EHT) array, with ∼10 new antennas and instrumental upgrades of existing antennas. The increased -coverage, sensitivity, and frequency coverage allow a wide range of new science opportunities to be explored. The ngEHT Analysis Challenges have been launched to inform the development of the ngEHT array design, science objectives, and analysis pathways. For each challenge, synthetic EHT and ngEHT datasets are generated from theoretical source models and released to the challenge participants, who analyze the datasets using image reconstruction and other methods. The submitted analysis results are evaluated with quantitative metrics. In this work, we report on the first two ngEHT Analysis Challenges. These have focused on static and dynamical models of M87* and Sgr A* and shown that high-quality movies of the extended jet structure of M87* and near-horizon hourly timescale variability of Sgr A* can be reconstructed by the reference ngEHT array in realistic observing conditions using current analysis algorithms. We identify areas where there is still room for improvement of these algorithms and analysis strategies. Other science cases and arrays will be explored in future challenges. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.This research was supported by NSF grants AST-1935980 and AST-2034306. This work was supported by the Black Hole Initiative at Harvard University, made possible through the support of grants from the Gordon and Betty Moore Foundation and the John Templeton Foundation. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Moore or Templeton Foundations. Hendrik Müller received financial support for this research from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. This research is supported by the DFG research grant “Jet physics on horizon scales and beyond” (Grant No. FR 4069/2-1), the ERC synergy grant “BlackHoleCam: Imaging the Event Horizon of Black Holes” (Grant No. 610058) and ERC advanced grant “JETSET: Launching, propagation and emission of relativistic jets from binary mergers and across mass scales” (Grant No. 884631). Jakob Knollmüller acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC 2094—390783311. Razieh Emami acknowledges the support by the Institute for Theory and Computation at the Center for Astrophysics as well as grant numbers 21-atp21-0077, NSF AST-1816420 and HST-GO-16173.001-A for very generous support.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    Accretion Flow Morphology in Numerical Simulations of Black Holes from the ngEHT Model Library: The Impact of Radiation Physics

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87∗ and Sagittarius A∗ (Sgr A∗ ). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87∗ and Sgr A∗, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87∗. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work. © 2023 by the authors. Licensee MDPI, Basel, Switzerland.We thank the National Science Foundation (AST-1716536, AST-1935980 and AST-2034306) and the Gordon and Betty Moore Foundation (GBMF-10423) for financially supporting this work. This work was supported in part by the Black Hole Initiative, which is funded by grants from the John Templeton Foundation (JTF-61497) and the Gordon and Betty Moore Foundation (GBMF-8273) to Harvard University. K.C. is also supported in part by the Black Hole PIRE program (NSF grant OISE-1743747). R.E. acknowledges the support by the Institute for Theory and Computation at the Center for Astrophysics as well as grant numbers 21-atp21-0077, NSF AST-1816420, and HST-GO-16173.001-A for very generous supports. H.M. received financial support for this research from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. This research is supported by the DFG research grant “Jet physics on horizon scales and beyond” (Grant No. FR 4069/2-1), the ERC synergy grant “BlackHoleCam: Imaging the Event Horizon of Black Holes” (Grant No. 610058), and ERC advanced grant “JETSET: Launching, propagation and emission of relativistic jets from binary mergers and across mass scales” (Grant No. 884631). J.K. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy—EXC 2094—390783311. Y.M. is supported by the National Natural Science Foundation of China (No. 12273022) and the Shanghai pilot program of international scientists for basic research (No. 22JC1410600).With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. V. Space and Ground Millimeter-VLBI Imaging of OJ 287

    Get PDF
    We present the first polarimetric space very long baseline interferometry (VLBI) observations of OJ 287, observed with RadioAstron at 22 GHz during a perigee session on 2014 April 4 and five near-in-time snapshots, together with contemporaneous ground VLBI observations at 15, 43, and 86 GHz. Ground-space fringes were obtained up to a projected baseline of 3.9 Earth diameters during the perigee session, and at a record 15.1 Earth diameters during the snapshot sessions, allowing us to image the innermost jet at an angular resolution of similar to 50 mu as, the highest ever achieved at 22 GHz for OJ 287. Comparison with ground-based VLBI observations reveals a progressive jet bending with increasing angular resolution that agrees with predictions from a supermassive binary black hole model, although other models cannot be ruled out. Spectral analyses suggest that the VLBI core is dominated by the internal energy of the emitting particles during the onset of a multiwavelength flare, while the parsec-scale jet is consistent with being in equipartition between the particles and magnetic field. Estimated minimum brightness temperatures from the visibility amplitudes show a continued rising trend with projected baseline length up to 10(13) K, reconciled with the inverse-Compton limit through Doppler boosting for a jet closely oriented to the line of sight. The observed electric vector position angle suggests that the innermost jet has a predominantly toroidal magnetic field, which, together with marginal evidence of a gradient in rotation measure across the jet width, indicates that the VLBI core is threaded by a helical magnetic field, in agreement with jet formation models

    Two flares with one shock: the interesting case of 3C 454.3

    Full text link
    The quasar 3C 454.3 is a blazar known for its rapid and violent outbursts seen across the electromagnetic spectrum. Using γ-ray, X-ray, multiband optical, and very-long-baseline interferometric data we investigate the nature of two such events that occurred in 2013 and 2014 accompanied by strong variations in optical polarization, including a ~230° electric vector position angle (EVPA) rotation. Our results suggest that a single disturbance was responsible for both flaring events. We interpret the disturbance as a shock propagating down the jet. Under this interpretation the 2013 flare originated most likely due to changes in the viewing angle caused by perhaps a bent or helical trajectory of the shock upstream of the radio core. The 2014 flare and optical polarization behavior are the result of the shock exiting the 43 GHz radio core, suggesting that shock crossings are one of the possible mechanisms for EVPA rotations.Accepted manuscrip
    corecore