37 research outputs found

    Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies

    Get PDF
    The recent severe acute respiratory syndrome, known as Coronavirus Disease 2019 (COVID-19) has spread so much rapidly and severely to induce World Health Organization (WHO) to declare a state of emergency over the new coronavirus SARS-CoV-2 pandemic. While several countries have chosen the almost complete lock-down for slowing down SARS-CoV-2 spread, the scientific community is called to respond to the devastating outbreak by identifying new tools for diagnosis and treatment of the dangerous COVID-19. With this aim, we performed an in silico comparative modeling analysis, which allows gaining new insights into the main conformational changes occurring in the SARS-CoV-2 spike protein, at the level of the receptor-binding domain (RBD), along interactions with human cells angiotensin-converting enzyme 2 (ACE2) receptor, that favor human cell invasion. Furthermore, our analysis provides (1) an ideal pipeline to identify already characterized antibodies that might target SARS-CoV-2 spike RBD, aiming to prevent interactions with the human ACE2, and (2) instructions for building new possible neutralizing antibodies, according to chemical/physical space restraints and complementary determining regions (CDR) mutagenesis of the identified existing antibodies. The proposed antibodies show in silico high affinity for SARS-CoV-2 spike RBD and can be used as reference antibodies also for building new high-affinity antibodies against present and future coronaviruses able to invade human cells through interactions of their spike proteins with the human ACE2. More in general, our analysis provides indications for the set-up of the right biological molecular context for investigating spike RBD–ACE2 interactions for the development of new vaccines, diagnostic kits, and other treatments based on the targeting of SARS-CoV-2 spike protein

    Geographical Variation in Medication Prescriptions: A Multiregional Drug-Utilization Study

    Get PDF
    Background: Studies have emphasized the importance of geographical factors and general practitioner (GP) characteristics in influencing drug prescriptions. Objectives: To: (i) ascertain the prevalence rate (PR) of use of drugs in six therapeutic categories used for chronic conditions; (ii) assess how geographical characteristics and GP characteristics may influence drug prescribing. Methods: This study is part of the EDU.RE.DRUG Project, a national collaborative project founded by Italian Medicine Agency (AIFA). Cross-sectional analyses were undertaken employing the pharmacy-claim databases of four local health units (LHUs) located in two Italian regions: Lombardy and Campania. Six drug categories were evaluated: proton-pump inhibitors; antibiotics; respiratory-system drugs; statins; agents acting on the renin 12angiotensin system; psychoanaleptic drugs. The PR was estimated according to drug categories at the LHU level. A linear multivariate regression analysis was undertaken to evaluate the association between the PR and geographical area, age and sex of GPs, number of patients, and percentage of patients aged >65 per GP. Results: LHUs in Campania showed a PR that was significantly higher than that in Lombardy. Antibiotics showed the highest PR in all the LHUs assessed, ranging from 32.5% in Lecco (Lombardy) to 59.7% in Naples-2 (Campania). Multivariate linear regression analysis confirmed the association of the PR with geographical area for all drug categories. Being located in Campania increased the possibility of receiving a drug prescription from the categories considered, with estimates more marked for antibiotics, proton-pump-inhibitors, and respiratory-system drugs. Conclusions: This study provides information about the PR of medications used for treating common and costly conditions in Italy and highlighted a significant geographical variation. These insights could help to develop area-specific strategies to optimize prescribing behavior

    A pragmatic controlled trial to improve the appropriate prescription of drugs in adult outpatients: Design and rationale of the EDU.RE.DRUG study

    Get PDF
    Introduction: Pharmacological intervention is an important component of patient care. However, drugs are often inappropriately used. It is necessary for countries to implement strategies to improve the rational use of drugs, including independent information for healthcare professionals and the public, which must be supported by well-trained staff. The primary objectives of the EDU.RE.DRUG (Effectiveness of informative and/or educational interventions aimed at improving the appropriate use of drugs designed for general practitioners and their patients) study are the retrospective evaluation of rates of appropriate prescribing indicators (APIs) and the assessment of the effectiveness of informative and/or educational interventions addressed to general practitioners (GPs) and their patients, aimed at improving prescribing quality and promoting proper drug use. Methods and analysis: This is a prospective, multicentre, open-label, parallel-arm, controlled, pragmatic trial directed to GPs and their patients in two Italian regions (Campania and Lombardy). The study data are retrieved from administrative databases (Demographic, Pharmacy-refill, and Hospitalization databases) containing healthcare information of all beneficiaries of the National Health Service in the Local Health Units (LHUs) involved. According to LHU, the GPs/patients will be assigned to one of the following four intervention arms: (1) intervention on GPs and patients; (2) intervention on GPs; (3) intervention on patients; and (4) no intervention (control). The intervention designed for GPs consists of reports regarding the status of their patients according to the APIs determined at baseline and in two on-line Continuous Medical Education (CME) courses. The intervention designed for patients consists in flyers and posters distributed in GPs ambulatories and community pharmacies, focusing on correct drug use. A set of indicators (such as potential drug–drug interactions, unnecessary duplicate prescriptions, and inappropriate prescriptions in the elderly), adapted to the Italian setting, has been defined to determine inappropriate prescription at baseline and after the intervention phase. The primary outcome was a composite API. Ethics and dissemination: The study was approved by the Ethics Committee of the University of Milan on 7th June 2017 (code 15/17). The investigators will communicate trial results to stakeholders, collaborators, and participants via appropriate presentations and publications. Registration details: NCT04030468. EudraCT number 2017-002622-2

    Zoledronic acid as a novel dual blocker of KIR6.1/2-SUR2 subunits of ATP-sensitive K+ channels: Role in the adverse drug reactions

    Get PDF
    Zoledronic acid (ZOL) is used as a bone-specific antiresorptive drug with antimyeloma effects. Adverse drug reactions (A.D.R.) are associated with ZOL-therapy, whose mechanics are unknown. ZOL is a nitrogen-containing molecule whose structure shows similarities with nucleotides, ligands of ATP-sensitive K+ (KATP) channels. We investigated the action of ZOL by performing in vitro patch-clamp experiments on native KATP channels in murine skeletal muscle fibers, bone cells, and recombinant subunits in cell lines, and by in silico docking the nucleotide site on KIR and SUR, as well as the glibenclamide site. ZOL fully inhibited the KATP currents recorded in excised macro-patches from Extensor digitorum longus (EDL) and Soleus (SOL) muscle fibers with an IC50 of 1.2 ± 1.4 × 10−6 and 2.1 ± 3.7 × 10−10 M, respectively, and the KATP currents recorded in cell-attached patches from primary long bone cells with an IC50 of 1.6 ± 2.8 × 10−10 M. ZOL fully inhibited a whole-cell KATP channel current of recombinant KIR6.1-SUR2B and KIR6.2-SUR2A subunits expressed in HEK293 cells with an IC50 of 3.9 ± 2.7 × 10−10 M and 7.1 ± 3.1 × 10−6 M, respectively. The rank order of potency in inhibiting the KATP currents was: KIR6.1-SUR2B/SOLKATP/osteoblast-KATP > KIR6.2-SUR2A/EDL-KATP >>> KIR6.2-SUR1 and KIR6.1-SUR1. Docking investigation revealed that the drug binds to the ADP/ATP sites on KIR6.1/2 and SUR2A/B and on the sulfonylureas site showing low binding energy <6 Kcal/mol for the KIR6.1/2-SUR2 subunits vs. the <4 Kcal/mol for the KIR6.2-SUR1. The IC50 of ZOL to inhibit the KIR6.1/2-SUR2A/B channels were correlated with its musculoskeletal and cardiovascular risks. We first showed that ZOL blocks at subnanomolar concentration musculoskeletal KATP channels and cardiac and vascular KIR6.2/1-SUR2 channels

    A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification

    Get PDF
    Dysregulation of receptor tyrosine kinases (RTKs) contributes to several aspects of oncogenesis including drug resistance. In melanoma, distinct RTKs have been involved in BRAF inhibitors (BRAFi) resistance, yet the utility of RTKs expression pattern to identify intrinsically resistant tumors has not been assessed. Transcriptional profiling of RTKs and integration with a previous classification, reveals three robust subtypes in two independent datasets of melanoma cell lines and one cohort of melanoma samples. This classification was validated by Western blot in a panel of patient-derived melanoma cell lines. One of the subtypes identified here for the first time displayed the highest and lowest expression of EGFR and ERBB3, respectively, and included BRAF-mutant tumors all intrinsically resistant to BRAFi PLX4720, as assessed by analysis of the Cancer Cell Line Encyclopedia pharmacogenomic study and by in vitro growth inhibition assays. High levels of EGFR were detected, even before therapy, in tumor cells of one of three melanoma patients unresponsive to BRAFi. Use of different pharmacological inhibitors highlighted the relevance of PI3K/mTOR signaling for growth of this PLX4720-resistant subtype. Our results identify a specific molecular profile of melanomas intrinsically resistant to BRAFi and suggest the PI3K/mTOR pathway as a potential therapeutic target for these tumors

    Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b

    Get PDF
    In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels. Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma

    Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study

    Get PDF
    Background and aims: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high levels of blood cholesterol from birth and premature coronary heart disease. Thus, the identification of FH patients is crucial to prevent or delay the onset of cardiovascular events, and the availability of a tool helping with the diagnosis in the setting of general medicine is essential to improve FH patient identification.Methods: This study evaluated the performance of the Dutch Lipid Clinic Network (DLCN) score in FH patients enrolled in the LIPIGEN study, an Italian integrated network aimed at improving the identification of patients with genetic dyslipidaemias, including FH.Results: The DLCN score was applied on a sample of 1377 adults (mean age 42.9 +/- 14.2 years) with genetic diagnosis of FH, resulting in 28.5% of the sample classified as probable FH and 37.9% as classified definite FH. Among these subjects, 43.4% had at least one missing data out of 8, and about 10.0% had 4 missing data or more. When analyzed based on the type of missing data, a higher percentage of subjects with at least 1 missing data in the clinical history or physical examination was classified as possible FH (DLCN score 3-5). We also found that using real or estimated pre-treatment LDL-C levels may significantly modify the DLCN score.Conclusions: Although the DLCN score is a useful tool for physicians in the diagnosis of FH, it may be limited by the complexity to retrieve all the essential information, suggesting a crucial role of the clinical judgement in the identification of FH subjects

    Tools to investigate and avoid drug-hypersensitivity in drug development

    No full text
    Drug hypersensitivity reactions (DHRs) are common adverse effects of pharmaceuticals that clinically resemble allergies, and which are becoming an important burden to healthcare systems. Alongside accurate diagnostic techniques, tools which can predict potential drug-inducing hypersensitivity reactions in the pre-clinical phase are critical. Despite the important adverse reactions linked to immune-mediated hypersensitivity, at present, there are no validated or required in vivo or in vitro methods to screen the sensitizing potential of drugs and their metabolites in the pre-clinical phase. Areas covered: Enhanced prediction in preclinical safety evaluation is extremely important. The purpose of this review is to assess the state of the art of tools available to assess the allergenic potential of drugs and to highlight our current understanding of the molecular mechanisms underlying inappropriate immune activation. Expert opinion: The knowledge that allergenic drugs share common mechanisms of immune cell activation with chemical allergens, and of the definition of the mechanistic pathway to adverse outcomes, can enhance targeting toxicity testing in drug development and hazard assessment of hypersensitivity. Additional efforts and extensive resources are necessary to improve preclinical testing methodologies, including optimization, better design and interpretation of data
    corecore