25 research outputs found

    Advancing Smart Manufacturing in Europe: Experiences from Two Decades of Research and Innovation Projects

    Get PDF
    In the past two decades, a large amount of attention has been devoted to the introduction of smart manufacturing concepts and technologies into industrial practice. In Europe, these efforts have been supported by European research and innovation programs, bringing together research and application parties. In this paper, we provide an overview of a series of four content-wise connected projects on the European scale that are aimed at advancing smart manufacturing, with a focus on connecting processes on smart factory shop floors to manufacturing equipment on the one hand and enterprise-level business processes on the other hand. These projects cover several tens of application cases across Europe. We present our experiences in the form of a single, informal longitudinal case study, highlighting both the major advances and the current limitations of developments. To organize these experiences, we place them in the context of the well-known RAMI4.0 reference framework for Industry 4.0 (covering the ISA-95 standard). Then, we analyze the experiences, both the positive ones and those including problems, and draw our learnings from these. In doing so, we do not present novel technological developments in this paper—these are presented in the papers we refer to—but concentrate on the main issues we have observed to guide future developments in research efforts and industrial innovation in the smart industry domain

    Novel Approach using Risk Analysis Component to Continuously Update Collaborative Robotics Applications in the Smart, Connected Factory Model

    Get PDF
    Building on the idea of Industry 4.0, new models of the highly connected factory that leverage factory‐generated data to introduce cost‐effective automation and involve the human worker for creating higher added value are possible. Within this context, collaborative robots are becoming more common in industry. However, promises regarding flexibility cannot be satisfied due to the challenging process of ensuring human safety. This is because current regulations and standards require updates to the risk assessment for every change to the robotic application, including the parts involved, the robotic components, and the type of interaction within the workspace. This work presents a novel risk analysis software tool that was developed to support change management for adaptive collaborative robotic systems in the connected factory model. The main innovation of this work is the tool’s ability to automatically identify where changes have been made to components or processes within a specific application through its integration with a connected factory architecture. This allows a safety expert to easily see where updates to the risk assessment are required, helping them to maintain conformity with the CE marking process despite frequent changes. To evaluate the benefits of this tool, a user study was performed with an exemplary use-case from the SHOP4CF project. The results show that this newly developed technology for risk assessment has better usability and lower omission errors when compared to existing methods. Therefore, this study underlines the need for tools that can help safety engineers cope with changes in flexible robotics applications and reduce omission errors.publishedVersionPeer reviewe

    Multimodal Interface for Human–Robot Collaboration

    Get PDF
    Human–robot collaboration (HRC) is one of the key aspects of Industry 4.0 (I4.0) and requires intuitive modalities for humans to communicate seamlessly with robots, such as speech, touch, or bodily gestures. However, utilizing these modalities is usually not enough to ensure a good user experience and a consideration of the human factors. Therefore, this paper presents a software component, Multi-Modal Offline and Online Programming (M2O2P), which considers such characteristics and establishes a communication channel with a robot with predefined yet configurable hand gestures. The solution was evaluated within a smart factory use case in the Smart Human Oriented Platform for Connected Factories (SHOP4CF) EU project. The evaluation focused on the effects of the gesture personalization on the perceived workload of the users using NASA-TLX and the usability of the component. The results of the study showed that the personalization of the gestures reduced the physical and mental workload and was preferred by the participants, while overall the workload of the tasks did not significantly differ. Furthermore, the high system usability scale (SUS) score of the application, with a mean of 79.25, indicates the overall usability of the component. Additionally, the gesture recognition accuracy of M2O2P was measured as 99.05%, which is similar to the results of state-of-the-art applications.publishedVersionPeer reviewe

    Cell cyclins: triggering elements of cancer or not?

    Get PDF
    Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy

    Tackling Complexity in Smart Manufacturing with Advanced Manufacturing Process Management

    Get PDF

    Hybrid Service Compositions: When BPM Meets Dynamic Case Management

    No full text
    Part 2: Industry TrackInternational audienceIn organizations’ efforts to achieve process efficiency and agility, disciplines like business process management and case management have been used widely. While the former is a process-driven discipline which routes processes through specific activities, the latter advances through events based on the case data, characterizing it as event-driven and data-driven. However, these two apparently dissimilar approaches can be combined with the common goal to offer flexible service compositions in a service-dominant context. This paper proposes a way to do so through a business-engineering framework for service-dominant business. The structured approach for business design and the subsequent proposed implementation with IT systems will enable organizations, for instance in financial services sector, to leverage service automation. A working prototype for service management is developed as a proof-of-concept demonstrating that the realization of such a mixed approach is practically feasible

    Hybrid service compositions : when BPM meets dynamic case management

    No full text
    In organizations’ efforts to achieve process efficiency and agility, disciplines like business process management and case management have been used widely. While the former is a process-driven discipline which routes processes through specific activities, the latter advances through events based on the case data, characterizing it as event-driven and data-driven. However, these two apparently dissimilar approaches can be combined with the common goal to offer flexible service compositions in a service-dominant context. This paper proposes a way to do so through a business-engineering framework for service-dominant business. The structured approach for business design and the subsequent proposed implementation with IT systems will enable organizations, for instance in financial services sector, to leverage service automation. A working prototype for service management is developed as a proof-of-concept demonstrating that the realization of such a mixed approach is practically feasible

    Using business process models for the specification of manufacturing operations

    No full text
    Business process management (BPM) is often employed as a driver of integration, by articulating business processes that cross the boundaries of individual business functions. Business process modelling as part of BPM has shown its potential in administrative environments, such as banking and insurance organizations. However, business process modelling remains unproven for all the processes encountered in manufacturing enterprises, including the physical operations processes that transform input materials into the required product. These processes have physical characteristics that make them essentially different from administrative processes with a highly digital nature, like limited physical buffers for intermediate products and transportation times between activities. In this paper, we present an approach to use business process models for the specification of these physical operations processes. Our approach is based on a catalogue of common process fragments that are adapted to the physical nature of manufacturing. These process fragments serve as reusable building blocks for the specification of manufacturing processes. We use the industry standard Business Process Model and Notation (BPMN) to represent both fragments and processes. We demonstrate the use of our catalogue of fragments by modelling and enacting the real-world processes of ten manufacturing organizations. The results show strong support for the use of business process models for both representation and enactment of manufacturing processes. This work closes part of the gap between the support for administrative processes and physical industrial processes, thus contributing to the advent of the smart manufacturing concept in the context of Industry 4.0
    corecore